Hostname: page-component-745bb68f8f-lrblm Total loading time: 0 Render date: 2025-01-15T01:21:28.470Z Has data issue: false hasContentIssue false

Statistical features of heat transfer in grid-generated turbulence: constant-gradient case

Published online by Cambridge University Press:  12 April 2006

K. S. Venkataramani
Affiliation:
Department of Mechanical Engineering, State University of New York, Stony Brook Present address: General Applied Science Laboratory, Westbury, New York 11590.
R. Chevray
Affiliation:
Department of Mechanical Engineering, State University of New York, Stony Brook

Abstract

Turbulence produced by a grid which simultaneously imparts a mean temperature profile varying linearly with height was investigated in a specially constructed wind tunnel. While the mean temperature profile is preserved downstream of the grid in accordance with the theory of Corrsin (1952), the downstream evolution of the r.m.s. temperature fluctuation is at variance with his prediction. The reason for this discrepancy is shown to lie in the neglect of molecular diffusivity, which leads to unbounded growth of the fluctuations. Along with conventional correlations and spectra, the filtered heat-transfer correlation is presented. About 60% of the heat transport is accomplished by the low wavenumber components having length scales equal to or larger than the integral scale. An intriguing feature of the present experiments is the presence of an inertial-convective subrange for the temperature field notwithstanding the low Reynolds number and the consequent absence of an inertial subrange for the velocity field. Experimental results show that the temperature has a positive skewness everywhere in contrast to the velocity components, which are symmetrically distributed. Measurements of the joint probability density function of the vertical component of the velocity and the temperature indicate that, while the assumption of joint normality is not uniformly valid, the conditional expectations nearly follow the normal law. Marginal and joint moments of up to fourth order are presented. Odd-order joint moments are clearly sensitive to the skewness of the temperature.

Type
Research Article
Copyright
© 1978 Cambridge University Press

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Alexopoulous, C. C. & Keffer, J. F. 1971 Phys. Fluids 14, 216.
Batchelor, G. K. 1959 J. Fluid Mech. 5, 113.
Batchelor, G. K. 1970 The Theory of Homogeneous Turbulence. Cambridge University Press.
Batchelor, G. K., Howells, I. D. & Townsend, A. A. 1959 J. Fluid Mech. 5, 134.
Champagne, F. H., Harris, V. G. & Corrsin, S. 1970 J. Fluid Mech. 41, 81.
Chevray, R. & Tutu, N. K. 1972 Rev. Sci. Instr. 43, 1417.
Chevray, R. & Venkataramani, K. S. 1977 Submitted for publication.
Comte-Bellot, G. & Cobbsin, S. 1966 J. Fluid Mech. 25, 657.
Comte-Bellot, G. & Cobrsin, S. 1970 J. Fluid. Mech. 48, 273.
Corbsin, S. 1951a J. Aero. Sci. 18, 417.
Cobbsin, S. 1951b J. Appl. Phys. 22, 469.
Cobbsin, S. 1952 J. Appl. Phys. 23, 113.
Cobbsin, S. 1972 Phys. Fluids 15, 986.
Dopazo, C. 1975 Phys. Fluids 18, 397.
Dopazo, C. & O'BRIEN, E. E.1974 Acta Astronautica 1, 1239.
Fbenkiel, F. N. & Klebanoff, P. S. 1965 Phys. Fluids 8, 2291.
Frenkiel, F. N. & Klebanoff, P. S. 1967a Phys. Fluids 10, 507.
Frenkiel, F. N. & Klebanoff, P. S. 1967b Phys. Fluids 10, 1737.
Frenkiel, F. N. & Klebanoff, P. S. 1973 Phys. Fluids 16, 725.
Grant, H. L. & Nisbet, I. C. T. 1957 J. Fluid Mech. 2, 263.
Grant, H. L., Stewart, R. W. & Moilliet, A. 1962 J. Fluid Mech. 12, 241.
Hill, J. C. 1970 Phys. Fluids 13, 1394.
Kistleb, A. L. & Vrebalovich, T. 1966 J. Fluid Mech. 26, 37.
Lundgren, T. S. 1967 Phys. Fluids 10, 969.
Lundgren, T. S. 1972 Proc. Symp. Statistical Models & Turbulence, San Diego, p. 70. Springer.
Mills, R. R. & Corrsin, S. 1959 N.A.S.A. Memo. no. 5–5–59W.
Mills, R. R., Kistler, A. L., O'BRIEN, V. & Corrsin, S.1958 N.A.C.A. Tech. Note no. 4288.
Okubo, A. 1967 Phys. Fluids Suppl. 10, S72.
Ribeiro, M. M. & Whitelaw, J. H. 1975 J. Fluid Mech. 70, 1.
Saffman, P. G. 1960 J. Fluid Mech. 8, 273.
Sepri, P. 1971 Ph.D. dissertation, University of California, San Diego.
Taylor, G. I. 1921 Proc. Lond. Math. Soc. Ser. 2, 20, 196.
Tennekes, H. & Lumley, J. L. 1972 A First Course in Turbulence. M.I.T. Press.
Tutu, N. K. 1976 Ph.D. dissertation, State University of New York, Stony Brook.
Tutu, N. K. & Chevbay, R. 1975 J. Fluid Mech. 71, 785.
Uberoi, M. S. 1963 Phys. Fluids 6, 1048.
Uberoi, M. S. & Wallis, S. 1966 J. Fluid Mech. 24, 539.
Venkataramani, K. S. 1977 Ph.D. dissertation, State University of New York, Stony Brook.
Venkataramani, K. S. & Chevray, R. 1977 In preparation.
Venkataramani, K. S., Tutu, N. K. & Chevbay, R. 1975 Phys. Fluids 18, 1413.
Wiskind, H. K. 1962 J. Geophys. Res. 67, 3033.
Wyngaard, J. 1971 J. Fluid Mech. 48, 763.
Yeh, T. 1971 Ph.D. dissertation, University of California, San Diego.