Hostname: page-component-745bb68f8f-5r2nc Total loading time: 0 Render date: 2025-01-14T00:31:06.031Z Has data issue: false hasContentIssue false

A statistical theory of turbulent relative dispersion

Published online by Cambridge University Press:  04 January 2007

P. FRANZESE
Affiliation:
Department of Computational and Data Sciences, George Mason University, Fairfax, VA 22030, USA
M. CASSIANI
Affiliation:
Department of Civil and Environmental Engineering, Duke University, Durham, NC 27708, USA

Abstract

The laws governing the spread of a cluster of particles in homogeneous isotropic turbulence are derived using a theoretical approach based on inertial subrange scaling and statistical diffusion theory. The equations for the mean square dispersion of a puff admit an analytical solution in the inertial subrange and at large scales. The solution is consistent with Taylor's theory of absolute dispersion. An analytical derivation of the Richardson–Obukhov constant of relative dispersion is presented. A time scale for relative dispersion is identified, as well as relations between Lagrangian and Eulerian structure functions. The results are extended to turbulence at finite Reynolds number. A closure assumption for the relative kinetic energy, based on Taylor's theory, is presented. Comparisons with direct numerical simulations and laboratory experiments are reported.

Type
Papers
Copyright
Copyright © Cambridge University Press 2007

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Arya, P. S. 1999 Air Pollution Meteorology and Dispersion. Oxford University Press.Google Scholar
Babiano, A., Basdevant, C., Le Roy, P. & Sadourny, R. 1990 Relative dispersion in two-dimensional turbulence. J. Fluid Mech. 214, 535557.CrossRefGoogle Scholar
Batchelor, G. K. 1950 The application of the similarity theory of turbulence to atmospheric diffusion. Q. J. R. Met. Soc. 76, 133146.CrossRefGoogle Scholar
Batchelor, G. K. 1952 Diffusion in a field of homogeneous turbulence II. The relative motion of particles. Proc. Camb. Phil. Soc. 48, 345362.CrossRefGoogle Scholar
Batchelor, G. K. & Townsend, A. A. 1956 Turbulent diffusion. In Surveys in Mechanics (ed. Batchelor, G. K. & Davies, R. M.), Cambridge Monographs on Mechanics and Applied Mathematics, pp. 352399. Cambridge University Press.Google Scholar
Biferale, L., Boffetta, G., Celani, A., Devenish, B. J., Lanotte, A. & Toschi, F. 2005 Lagrangian statistics of particle pairs in homogeneous isotropic turbulence. Phys. Fluids 17, 115101/1115101/9.CrossRefGoogle Scholar
Boffetta, G. & Sokolov, I. M. 2002 a Relative dispersion in fully developed turbulence: the Richardson's law and intermittency corrections. Phys. Rev. Lett. 88, 094501/1094501/4.CrossRefGoogle ScholarPubMed
Boffetta, G. & Sokolov, I. M. 2002b Statistics of two-particle dispersion in two-dimensional turbulence. Phys. Fluids 14, 32243232.CrossRefGoogle Scholar
Borgas, M. S. & Sawford, B. L. 1991 The small-scale structure of acceleration correlations and its role in the statistical theory of turbulent dispersion. J. Fluid Mech. 228, 295320.Google Scholar
Borgas, M. S. & Sawford, B. L. 1994 A family of stochastic models for two-particle dispersion in isotropic homogeneous stationary turbulence. J. Fluid Mech. 279, 6999.CrossRefGoogle Scholar
Borgas, M. S. & Yeung, P. K. 2004 Relative dispersion in isotropic turbulence. Part 2. A new stochastic model with Reynolds-number dependence. J. Fluid Mech. 503, 125160.CrossRefGoogle Scholar
Bourgoin, M., Ouellette, N. T., Xu, H., Berg, J. & Bodenschatz, E. 2006 The role of pair dispersion in turbulent flow. Science 311, 835838.CrossRefGoogle ScholarPubMed
Cassiani, M. & Giostra, U. 2002 A simple and fast model to compute concentration moments in a convective boundary layer. Atmos. Environ. 36, 47174724.CrossRefGoogle Scholar
Cassiani, M., Franzese, P. & Giostra, U. 2005 A PDF micromixing model of dispersion for atmospheric flow. Part I. Development of the model, application to homogeneous turbulence and to neutral boundary layer. Atmos. Environ. 39, 14571469.CrossRefGoogle Scholar
Corrsin, S. 1963 Estimates of the relations between Eulerian and Lagrangian scales in large Reynolds number turbulence. J. Atmos. Sci. 20, 115119.2.0.CO;2>CrossRefGoogle Scholar
Csanady, G. T. 1973 Turbulent Diffusion in the Environment. D. Reidel.CrossRefGoogle Scholar
Durbin, P. A. 1980 A stochastic model for two-particle dispersion and concentration fluctuations in homogeneous turbulence. J. Fluid Mech. 100, 279302.CrossRefGoogle Scholar
Elliott, F. W. & Majda, A. J. 1996 Pair dispersion over an inertial range spanning many decades. Phys. Fluids 8, 10521060.CrossRefGoogle Scholar
Faller, A. J. 1996 A random-flight evaluation of the constants of relative dispersion in idealized turbulence. J. Fluid Mech. 316, 139161.CrossRefGoogle Scholar
Flohr, P. & Vassilicos, J. C. 2000 A scalar subgrid model with flow structure for large-eddy simulations of scalar variances. J. Fluid Mech. 407, 315349.CrossRefGoogle Scholar
Fox, R. O. 1996 On velocity conditioned scalar mixing in homogeneous turbulence. Phys. Fluids 8, 26782691.CrossRefGoogle Scholar
Franzese, P. 2003 Lagrangian stochastic modelling of a fluctuating plume in the convective boundary layer. Atmos. Environ. 37, 16911701.CrossRefGoogle Scholar
Franzese, P. & Borgas, M. S. 2002 A simple relative dispersion model for concentration fluctuations in contaminant clouds. J. Appl. Met. 41, 11011111.2.0.CO;2>CrossRefGoogle Scholar
Frenkiel, F. N. & Katz, I. 1956 Studies of small-scale turbulent diffusion in the atmosphere. J. Met. 13, 388394.2.0.CO;2>CrossRefGoogle Scholar
Fung, J. C. H., Hunt, J. C. R., Malik, N. A. & Perkins, R. J. 1992 Kinematic simulation of homogeneous turbulence by unsteady random Fourier modes. J. Fluid Mech. 236, 281318.CrossRefGoogle Scholar
Gifford, F. A. 1977 Tropospheric relative diffusion observations. J. Appl. Met. 16, 311313.2.0.CO;2>CrossRefGoogle Scholar
Gioia, G., Lacorata, G., Marques Filho, E. P., Mazzino, A. & Rizza, U. 2004 Richardson's law in large-eddy simulations of boundary-layer flows. Boundary-Layer Met. 113, 187199.CrossRefGoogle Scholar
Goto, S. & Vassilicos, J. C. 2004 Particle pair diffusion and persistent streamline topology in two-dimensional turbulence. New J. Phys. 6, 135.CrossRefGoogle Scholar
Gotoh, T., Fukayama, D. & Nakano, T. 2002 Velocity field statistics in homogeneous steady turbulence obtained using a high-resolution direct numerical simulation. Phys. Fluids 14, 10651081.CrossRefGoogle Scholar
Heinz, S. 2003 Statistical Mechanics of Turbulent Flows. Springer.CrossRefGoogle Scholar
Heppe, B. M. O. 1998 Generalized Langevin equation for relative turbulent dispersion. J. Fluid Mech. 357, 167198.CrossRefGoogle Scholar
Ishihara, T. & Kaneda, Y. 2002 Relative diffusion of a pair of fluid particles in the inertial subrange of turbulence. Phys. Fluids 14, L69–L72.CrossRefGoogle Scholar
Ivanov, V. N. & Stratonovich, R. L. 1963 On the Lagrange characteristics of turbulence. Izv. Akad. Nauk USSR, Ser. Geofiz, (10), 15811593.Google Scholar
Jullien, M.-C., Paret, J. & Tabeling, P. 1999 Richardson pair dispersion in two-dimensional turbulence. Phys. Rev. Lett. 82, 28722875.CrossRefGoogle Scholar
Kraichnan, R. H. 1966 Dispersion of particle pairs in homogeneous turbulence. Phys. Fluids 9, 19371943.CrossRefGoogle Scholar
Kurbanmuradov, O. A. & Sabelfeld, K. K. 1995 Stochastic Lagrangian models of relative dispersion of a pair of fluid particles in turbulent flows. Monte Carlo Methods Applics. 1, 101136.Google Scholar
Kurbanmuradov, O. A., Orszag, S. A., Sabelfeld, K. K. & Yeung, P. K. 2001 Analysis of relative dispersion of two particles by Lagrangian stochastic models and DNS methods. Monte Carlo Methods Applics. 7, 245264.Google Scholar
Larchevêque, M. & Lesieur, M. 1981 The applications of eddy-damped Markovian closures to the problem of dispersion of particle pairs. J. Méc. 20, 113134.Google Scholar
Lien, R.-C. & D'Asaro, E. A. 2002 The Kolmogorov constant for the Lagrangian velocity spectrum and structure function. Phys. Fluids 14, 44564459.CrossRefGoogle Scholar
Lin, C. C. 1960 On a theory of dispersion by continuous movements. Proc. Natl Acad. Sci. USA 46, 566570.CrossRefGoogle ScholarPubMed
Lin, C. C. & Reid, W. H. 1963 Turbulent flow, theoretical aspects. In Handbuch der Physik (ed. Flugge, S. & Truesdell, C.), vol. 8, pp. 438523. Springer.Google Scholar
Luhar, A. K., Hibberd, M. F. & Borgas, M. S. 2000 A skewed meandering plume model for concentration statistics in the convective boundary layer. Atmos. Environ. 34, 35993616.Google Scholar
Lumley, J. L. 1961 The mathematical nature of the problem of relating Lagrangian and Eulerian statistical functions in turbulence. In Actes du Colloque International sur la Mécanique de la Turbulence, Marseille, France, pp. 1726. Éditions du CNRS.Google Scholar
Maurizi, A., Pagnini, G. & Tampieri, F. 2004 Influence of Eulerian and Lagrangian scales on the relative dispersion properties in Lagrangian stochastic models of turbulence. Phys. Rev. E 69, 037301/1037301/4.CrossRefGoogle ScholarPubMed
Mikkelsen, T., Larsen, S. E. & Pécseli, H. L. 1987 Diffusion of Gaussian puffs. Q. J. R. Met. Soc. 113, 81105.CrossRefGoogle Scholar
Monin, A. S. & Yaglom, A. M. 1971 Statistical Fluid Mechanics, vol. 1. The MIT Press.Google Scholar
Monin, A. S. & Yaglom, A. M. 1975 Statistical Fluid Mechanics, vol. 2. The MIT Press.Google Scholar
Novikov, E. A. 1989 Two-particle description of turbulence, Markov property, and intermittency. Phys. Fluids 1, 326330.CrossRefGoogle Scholar
Novikov, E. A. 1963 Random force method in turbulence theory. Sov. Phys., J. Exp. Theor. Phys. 17, 14491454.Google Scholar
Obukhov, A. M. 1941 On the distribution of energy in the spectrum of turbulent flow. Izv. Akad. Nauk USSR, Ser. Geogr. Geofiz. 5, 453466.Google Scholar
Ott, S. & Mann, J. 2000 An experimental investigation of the relative diffusion of particle pairs in three-dimensional turbulent flow. J. Fluid Mech. 422, 207223.CrossRefGoogle Scholar
Pasquill, F. 1962 Atmospheric Diffusion. Van Nostrand.Google Scholar
Pedrizzetti, G. & Novikov, E. A. 1994 On Markov modelling of turbulence. J. Fluid Mech. 280, 6993.CrossRefGoogle Scholar
Richardson, L. F. 1926 Atmospheric diffusion shown on a distance-neighbour graph. Proc. R. Soc. Lond. A 110, 709737.Google Scholar
Sawford, B. L. 1991 Reynolds number effects in Lagrangian stochastic models of turbulent dispersion. Phys. Fluids 3 (6), 15771586.CrossRefGoogle Scholar
Sawford, B. L. 2001 Turbulent relative dispersion. Annu. Rev. Fluid Mech. 33, 289317.CrossRefGoogle Scholar
Sawford, B. L. 2004 Micro-mixing modelling of scalar fluctuations for plumes in homogeneous turbulence. Flow Turb. Combust. 72, 133160.CrossRefGoogle Scholar
Sawford, B. L. & Hunt, J. C. R. 1986 Effects of turbulence structure, molecular diffusion and source size on scalar fluctuations in homogeneous turbulence. J. Fluid Mech. 165, 373400.CrossRefGoogle Scholar
Sreenivasan, K. R. 1995 On the universality of the Kolmogorov constant. Phys. Fluids 7 (11), 27782784.CrossRefGoogle Scholar
Sykes, R. I., Lewellen, W. S. & Parker, S. F. 1984 A turbulent transport model for concentration fluctuations and fluxes. J. Fluid Mech. 139, 193218.CrossRefGoogle Scholar
Taylor, G. I. 1921 Diffusion by continuous movements. Proc. Lond. Math. Soc. 20, 196211.Google Scholar
Taylor, G. I. 1959 The present position in the theory of turbulent diffusion. In Advances in Geophysics (ed. Frenkiel, F. N. & Sheppard, P. A.), Atmospheric Diffusion and Air Pollution, vol. 6, pp. 101112. Academic.Google Scholar
Tennekes, H. 1979 The exponential Lagrangian correlation function and turbulent diffusion in the inertial subrange. Atmos. Environ. 13, 15651567.CrossRefGoogle Scholar
Thomson, D. J. 1990 A stochastic model for the motion of particle pairs in isotropic high-Reynolds-number turbulence, and its application to the problem of concentration variance. J. Fluid Mech. 210, 113153.CrossRefGoogle Scholar
Thomson, D. J. 1996 The separation of particle pairs in the eddy-damped quasinormal Markovian approximation. Phys. Fluids 8, 642644.CrossRefGoogle Scholar
Thomson, D. J. & Devenish, B. J. 2005 Particle pair separation in kinematic simulations. J. Fluid Mech. 526, 277302.CrossRefGoogle Scholar
Villermaux, J. & Devillon, J. C. 1972 Représentation de la coalescence et de la redispersion des domaines de ségrégation dans un fluide par un modèle d'interaction phénoménologique. In Proc. Second Intl Symp. on Chemical Reaction Engineering, pp. 1–13.Google Scholar
Watanabe, T. & Gotoh, T. 2004 Statistics of a passive scalar in homogeneous turbulence. New J. Phys. 6 (40), 136.CrossRefGoogle Scholar
Wilson, D. J. 1995 Concentration Fluctuations and Averaging Time in Vapor Clouds. Center for Chemical Process Safety. American Institute of Chemical Engineers, New York.CrossRefGoogle Scholar
Yeung, P. K. & Pope, S. B. 1989 Lagrangian statistics from direct numerical simulations of isotropic turbulence. J. Fluid Mech. 207, 531586.CrossRefGoogle Scholar
Yeung, P. K. & Zhou, Y. 1997 Universality of the Kolmogorov constant in numerical simulations of turbulence. Phys. Rev. E 56, 17461752.CrossRefGoogle Scholar