Hostname: page-component-78c5997874-g7gxr Total loading time: 0 Render date: 2024-11-11T15:54:00.628Z Has data issue: false hasContentIssue false

Stochastic dynamics of active swimmers in linear flows

Published online by Cambridge University Press:  21 February 2014

Mario Sandoval*
Affiliation:
Department of Mechanical and Aerospace Engineering, University of California San Diego, 9500 Gilman Drive, La Jolla, CA 92093-0411, USA Department of Physics, Universidad Autonoma Metropolitana-Iztapalapa, Apartado Postal 55-534, Mexico, Distrito Federal 09340, Mexico
Navaneeth K. Marath
Affiliation:
Engineering Mechanics Unit, JNCASR, Bangalore 560064, India
Ganesh Subramanian
Affiliation:
Engineering Mechanics Unit, JNCASR, Bangalore 560064, India
Eric Lauga
Affiliation:
Department of Mechanical and Aerospace Engineering, University of California San Diego, 9500 Gilman Drive, La Jolla, CA 92093-0411, USA Department of Applied Mathematics and Theoretical Physics, University of Cambridge, Centre for Mathematical Sciences, Wilberforce Road, Cambridge CB3 0WA, UK
*
Email address for correspondence: sem@xanum.uam.mx

Abstract

Most classical work on the hydrodynamics of low-Reynolds-number swimming addresses deterministic locomotion in quiescent environments. Thermal fluctuations in fluids are known to lead to a Brownian loss of the swimming direction, resulting in a transition from short-time ballistic dynamics to effective long-time diffusion. As most cells or synthetic swimmers are immersed in external flows, we consider theoretically in this paper the stochastic dynamics of a model active particle (a self-propelled sphere) in a steady general linear flow. The stochasticity arises both from translational diffusion in physical space, and from a combination of rotary diffusion and so-called run-and-tumble dynamics in orientation space. The latter process characterizes the manner in which the orientation of many bacteria decorrelates during their swimming motion. In contrast to rotary diffusion, the decorrelation occurs by means of large and impulsive jumps in orientation (tumbles) governed by a Poisson process. We begin by deriving a general formulation for all components of the long-time mean square displacement tensor for a swimmer with a time-dependent swimming velocity and whose orientation decorrelates due to rotary diffusion alone. This general framework is applied to obtain the convectively enhanced mean-squared displacements of a steadily swimming particle in three canonical linear flows (extension, simple shear and solid-body rotation). We then show how to extend our results to the case where the swimmer orientation also decorrelates on account of run-and-tumble dynamics. Self-propulsion in general leads to the same long-time temporal scalings as for passive particles in linear flows but with increased coefficients. In the particular case of solid-body rotation, the effective long-time diffusion is the same as that in a quiescent fluid, and we clarify the lack of flow dependence by briefly examining the dynamics in elliptic linear flows. By comparing the new active terms with those obtained for passive particles we see that swimming can lead to an enhancement of the mean-square displacements by orders of magnitude, and could be relevant for biological organisms or synthetic swimming devices in fluctuating environmental or biological flows.

Type
Papers
Copyright
© 2014 Cambridge University Press 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Abbott, J. J., Peyer, K. E., Lagomarsino, M. C., Zhang, L., Dong, L., Kaliakatsos, I. K. & Nelson, B. J. 2009 How should microrobots swim?. Int. J. Robot. Res. 28, 14341447.CrossRefGoogle Scholar
Abramowitz, M. & Stegun, I. 1970 Handbook of Mathematical Functions. Dover.Google Scholar
Bearon, R. N. & Pedley, T. J. 2000 Modelling run-and-tumble chemotaxis in a shear flow. Bull. Math. Biol. 62, 775791.CrossRefGoogle Scholar
Berg, H. C. 1993 Random walks in biology. Princeton University Press.Google Scholar
Berg, H. C. 2004 E. coli in Motion. Springer.Google Scholar
Berne, B. J. & Pecora, R. 2000 Dynamic Light Scattering: with Applications to Chemistry, Biology, and Physics. Dover.Google Scholar
Brady, J. F. 2010 Particle motion driven by solute gradients with application to autonomous motion: continuum and colloidal perspectives. J. Fluid Mech. 667, 216259.CrossRefGoogle Scholar
Brenner, H. 1974 Rheology of a dilute suspension of axisymmetric Brownian particles. Intl J. Multiphase Flow 1 (2), 195341.CrossRefGoogle Scholar
Brenner, H. & Condiff, D. W. 1974 Transport mechanics in systems of orientable particles. IV. Convective transport. J. Colloid Interface Sci. 47 (1), 199264.CrossRefGoogle Scholar
Clercx, H. J. H. & Schram, P. P. J. M. 1992 Brownian particles in shear fiow and harmonic potentials: a study of long-time tails. Phys. Rev. A 46, 19421950.CrossRefGoogle Scholar
Coffey, W., Kalmikov, Y. P. & Valdron, Y. T. 1996 The Langevin Equation: With Applications in Physics, Chemistry and Electrical Engineering. World Scientific.CrossRefGoogle Scholar
Doi, M. & Edwards, S. F. 1999 The Theory of Polymer Dynamics. Clarendon Press.Google Scholar
Drescher, K., Leptos, K. C., Tuval, I., Ishikawa, T., Pedley, T. J. & Goldstein, R. E. 2009 Dancing volvox: hydrodynamic bound states of swimming algae. Phys. Rev. Lett. 102, 168101.CrossRefGoogle ScholarPubMed
Foister, R. T. & van de Ven, T. G. M. 1980 Diffusion of Brownian particles in shear flows. J. Fluid Mech. 96, 105132.CrossRefGoogle Scholar
Frankel, I. & Brenner, H. 1991 Generalized Taylor dispersion phenomena in unbounded homogeneous shear flows. J. Fluid Mech. 230, 147181.CrossRefGoogle Scholar
Frankel, I. & Brenner, H. 1993 Taylor dispersion of orientable Brownian particles in unbounded homogeneous shear flows. J. Fluid Mech. 255, 129156.CrossRefGoogle Scholar
Golestanian, R., Liverpool, T. B. & Ajdari, A. 2007 Designing phoretic micro- and nano-swimmers. New J. Phys. 9, 126.CrossRefGoogle Scholar
Guasto, J. S., Rusconi, R. & Stocker, R. 2012 Fluid mechanics of planktonic microorganisms. Annu. Rev. Fluid Mech. 44, 373400.CrossRefGoogle Scholar
Hauge, E. H. & Martin-Löf, A. 1973 Fluctuating hydrodynamics and Brownian motion. J. Stat. Phys. 7 (3), 259281.CrossRefGoogle Scholar
Hinch, E. J. 1975 Application of the Langevin equation to fluid suspensions. J. Fluid Mech. 72, 499511.CrossRefGoogle Scholar
Howse, J. R., Jones, R. A. L., Ryan, A. J., Gough, T., Vafabakhsh, R. & Golestanian, R. 2007 Self-motile colloidal particles: from directed propulsion to random walk. Phys. Rev. Lett. 99 (4), 048102.CrossRefGoogle ScholarPubMed
Ishikawa, T. & Pedley, T. J. 2007 Diffusion of swimming model micro-organisms in a semi-dilute suspension. J. Fluid Mech. 588, 437462.CrossRefGoogle Scholar
Jimenez, J. 1997 Oceanic turbulence at millimetre scales. Scientia Marina 61, 4756.Google Scholar
Jones, M. S., Baron, L. E. & Pedley, T. J. 1994 Biflagellate gyrotaxis in a shear flow. J. Fluid Mech. 281, 137.CrossRefGoogle Scholar
Jülicher, F. & Prost, J. 2009 Generic theory of colloidal transport. Eur. Phys. J. E 29 (1), 2736.CrossRefGoogle ScholarPubMed
Koch, D. L. & Subramanian, G. 2011 Collective hydrodynamics of swimming microorganisms: living fluids. Annu. Rev. Fluid Mech. 43, 230602.CrossRefGoogle Scholar
Kosa, G., Jakab, P., Szekely, G. & Hata, N. 2012 MRI driven magnetic microswimmers. Biomed. Microdevices 14, 165.CrossRefGoogle ScholarPubMed
Lauga, E. 2011 Enhanced diffusion by reciprocal swimming. Phys. Rev. Lett. 106, 178101.CrossRefGoogle ScholarPubMed
Lauga, E. & Goldstein, R. E. 2012 Dance of the microswimmers. Phys. Today 65 (9), 3035.CrossRefGoogle Scholar
Lauga, E. & Powers, T. R. 2009 The hydrodynamics of swimming microorganisms. Rep. Prog. Phys. 72, 096601.CrossRefGoogle Scholar
Leal, L. G. & Hinch, E. J. 1971 The effect of weak Brownian rotations on particles in shear flow. J. Fluid Mech. 46, 685703.CrossRefGoogle Scholar
Lipowsky, H. H., Kovalcheck, S. & Zweifach, B. W. 1978 The distribution of blood rheological parameters in the microvasculature of cat mesentery. Circulat. Res. 43, 738749.CrossRefGoogle ScholarPubMed
Locsei, J. T. & Pedley, T. J. 2009 Run and tumble chemotaxis in a shear flow: the effect of temporal comparisons, persistence, rotational diffusion, and cell shape. Bull. Math. Biol. 71, 10891116.CrossRefGoogle Scholar
Lovely, P. S. & Dahlquist, F. W. 1975 Statistical measures of bacterial motility and chemotaxis. J. Theor. Biol. 50, 477496.CrossRefGoogle ScholarPubMed
Mallouk, T. E. & Sen, A. 2009 Powering nanorobots. Sci. Am. 300, 7277.CrossRefGoogle ScholarPubMed
Mirkovic, T., Zacharia, N. S., Scholes, G. D. & Ozin, G. A. 2010 Fuel for thought: chemically powered nanomotors out-swim nature’s flagellated bacteria. ACS Nano 4, 17821789.CrossRefGoogle ScholarPubMed
Othmer, H. G. , Dunbar, S. R. & Alt, W. 1988 Models of dispersal in biological systems. J. Math. Biol. 26 (3), 263298.CrossRefGoogle ScholarPubMed
Pahlavan, A. A. & Saintillan, D. 2011 Instability regimes in flowing suspensions of swimming micro-organisms. Phys. Fluids 23, 011901.CrossRefGoogle Scholar
Paxton, W. F., Sundararajan, S., Mallouk, T. E. & Sen, A. 2006 Chemical locomotion. Angew. Chem. Intl Ed. Engl. 45, 54205429.CrossRefGoogle ScholarPubMed
Pedley, T. J. 1980 The Fluid Mechanics of Large Blood Vessels. Cambridge University Press.CrossRefGoogle Scholar
Pedley, T. J. & Kessler, J. O. 1992 Hydrodynamic phenomena in suspensions of swimming microorganisms. Annu. Rev. Fluid Mech. 24, 313358.CrossRefGoogle Scholar
Polin, M., Tuval, I., Drescher, K., Gollub, J. P. & Goldstein, R. E. 2009 Chlamydomonas swims with two gears in a eukaryotic version of run-and-tumble locomotion. Science 325, 487490.CrossRefGoogle Scholar
Rafai, S., Jibuti, L. & Peyla, P. 2010 Effective viscosity of microswimmer suspensions. Phys. Rev. Lett. 104, 098102.CrossRefGoogle ScholarPubMed
Saintillan, D. 2010a Extensional rheology of active suspensions. Phys. Rev. E 81, 056307.Google ScholarPubMed
Saintillan, D. 2010b The dilute rheology of swimming suspensions: a simple kinetic model. Exp. Mech. 50, 12751281.CrossRefGoogle Scholar
San-Miguel, M. & Sancho, J. M 1979 Brownian motion in shear flow. Physica 99A, 357364.CrossRefGoogle Scholar
Schmitt, M. & Stark, H. 2013 Swimming active droplet: a theoretical analysis. Eur. Phys. Lett. 101, 44008.CrossRefGoogle Scholar
Subramanian, G. & Brady, J. F. 2004 Multiple scales analysis of the Fokker–Planck equation for simple shear flow. Phys. A: Stat. Mech. Appl. 334 (3–4), 343384.CrossRefGoogle Scholar
Subramanian, G. & Koch, D. L 2009 Critical bacterial concentration for the onset of collective swimming. J. Fluid Mech. 632, 359400.CrossRefGoogle Scholar
ten Hagen, B., van Teeffelen, S. & Lowen, H. 2009 Non-Gaussian behaviour of a self-propelled particle on a substrate. Cond. Mat. Phys. 12, 725738.Google Scholar
ten Hagen, B., van Teeffelen, S. & Lowen, H. 2011a Brownian motion of a self-propelled particle. J. Phys.: Condens. Matter 23, 194119.Google ScholarPubMed
ten Hagen, B., Wittkowski, R. & Lowen, H. 2011b Brownian dynamics of a self-propelled particle in shear flow. Phys. Rev. E 84, 031105.Google ScholarPubMed
Thutupalli, S., Seemann, R. & Herminghaus, S. 2011 Swarming behaviour of simple model squirmers. New J. Phys. 13, 073021.CrossRefGoogle Scholar
Wang, J. & Gao, W. 2012 Nano/microscale motors: biomedical opportunities and challenges. ACS Nano 6, 5745.CrossRefGoogle ScholarPubMed
Zwanzig, R & Bixon, M 1970 Hydrodynamic theory of the velocity correlation function. Phys. Rev. A 2 (5), 2005.CrossRefGoogle Scholar