Article contents
Stretched vortices – the sinews of turbulence; large-Reynolds-number asymptotics
Published online by Cambridge University Press: 26 April 2006
Abstract
A large-Reynolds-number asymptotic theory is presented for the problem of a vortex tube of finite circulation [Gcy ] subjected to uniform non-axisymmetric irrotational strain, and aligned along an axis of positive rate of strain. It is shown that at leading order the vorticity field is determined by a solvability condition at first-order in ε = 1/R[Gcy ] where R[gcy ] = [gcy ]/ν. The first-order problem is solved completely, and contours of constant rate of energy dissipation are obtained and compared with the family of contour maps obtained in a previous numerical study of the problem. It is found that the region of large dissipation does not overlap the region of large enstrophy; in fact, the dissipation rate is maximal at a distance from the vortex axis at which the enstrophy has fallen to only 2.8% of its maximum value. The correlation between enstrophy and dissipation fields is found to be 0.19 + O(ε2). The solution reveals that the stretched vortex can survive for a long time even when two of the principal rates of strain are positive, provided R[gcy ] is large enough. The manner in which the theory may be extended to higher orders in ε is indicated. The results are discussed in relation to the high-vorticity regions (here described as ‘sinews’) observed in many direct numerical simulations of turbulence.
- Type
- Research Article
- Information
- Copyright
- © 1994 Cambridge University Press
References
- 202
- Cited by