Hostname: page-component-cd9895bd7-dk4vv Total loading time: 0 Render date: 2024-12-28T20:10:56.276Z Has data issue: false hasContentIssue false

Subharmonic capillary–gravity waves in large containers subject to horizontal vibrations

Published online by Cambridge University Press:  17 December 2013

José M. Perez-Gracia
Affiliation:
E.T.S.I. Aeronáuticos, Universidad Politécnica de Madrid, Plaza Cardenal Cisneros 3, 28040 Madrid, Spain
Jeff Porter
Affiliation:
E.T.S.I. Aeronáuticos, Universidad Politécnica de Madrid, Plaza Cardenal Cisneros 3, 28040 Madrid, Spain
Fernando Varas
Affiliation:
E.T.S.I. Aeronáuticos, Universidad Politécnica de Madrid, Plaza Cardenal Cisneros 3, 28040 Madrid, Spain
José M. Vega*
Affiliation:
E.T.S.I. Aeronáuticos, Universidad Politécnica de Madrid, Plaza Cardenal Cisneros 3, 28040 Madrid, Spain
*
Email address for correspondence: josemanuel.vega@upm.es

Abstract

This paper deals with nearly inviscid, capillary–gravity, modulated waves parametrically excited by monochromatic horizontal vibrations in liquid containers whose width and depth are both large compared with the wavelength of the excited waves. A general linear amplitude equation is derived with appropriate boundary conditions that provides the threshold acceleration and associated spatiotemporal patterns, which compare very well with experimental measurements and visualizations. The primary instability is associated with a pair of complex Floquet multipliers that are close to (but strictly different from) −1, meaning that the instability is not strictly (2:1) subharmonic. The resulting (quasi-periodic) waves are generally oblique, not perpendicular to the vibrating endwalls. The extension of the theory to other confined systems such as vibrating containers of arbitrary shape and vibrating drops is also considered.

Type
Papers
Copyright
©2013 Cambridge University Press 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Allgower, E. L. & Georg, K. 2003 Introduction to Numerical Continuation Methods. SIAM Classics in Applied Mathematics, vol. 45, Society for Industrial and Applied Mathematics.Google Scholar
Barnard, B. J. S. & Pritchard, W. G. 1972 Cross-waves. Part 2. Experiments. J. Fluid Mech. 55, 245255.Google Scholar
Benjamin, T. B. & Ursell, F. 1954 The stability of the plane free surface of a liquid in vertical periodic motion. Proc. R. Soc. Lond. A 225, 505515.Google Scholar
Bernoff, A. J., Kwok, L. P. & Lichter, S. 1989 Viscous cross-waves: an analytical treatment. Phys. Fluids A 1, 678688.Google Scholar
Faltinsen, O. M., Rognebakke, O. F. & Timokha, A. N. 2006 Transient and steady-state amplitudes of resonant three-dimensional sloshing in a square-based tank with a finite fluid depth. Phys. Fluids 18, 012103.CrossRefGoogle Scholar
Faraday, M. 1831 On the forms and states assumed by fluids in contact with vibrating elastic surfaces. Phil. Trans. R. Soc. Lond. 121, 319340.Google Scholar
Fauve, S. 1995 Parametric instabilities. In Dynamics of Nonlinear and Disordered Systems (ed. Martínez-Mekler, G. & Seligman, T. H.), pp. 67115. World Scientific.Google Scholar
Feng, Z. C. 1997 Transition to travelling waves from standing waves in a rectangular container subjected to horizontal excitations. Phys. Rev. Lett. 79, 415418.Google Scholar
Frandsen, J. B. 1997 Sloshing motions in excited tanks. J. Comput. Phys. 196, 5387.Google Scholar
Funakoshi, M. & Inoue, S. 1988 Surface waves due to resonant horizontal oscillation. J. Fluid Mech. 192, 219247.Google Scholar
Garrett, C. J. R. 1970 On cross-waves. J. Fluid Mech. 41, 837849.CrossRefGoogle Scholar
González-Viñas, W. & Salam, J. 1994 Surface waves periodically excited in a CO2 tube. Europhys. Lett. 26, 665670.Google Scholar
Guckenheimer, J. & Holmes, P. 1983 Nonlinear Oscillations Dynamical Systems and Bifurcation of Vector Fields. Springer.Google Scholar
Havelock, T. H. 1929 Forced surface waves on water. Phil. Mag. 8, 569576.CrossRefGoogle Scholar
Hermann, M. & Timokha, A. 2008 Modal modelling of the nonlinear resonant fluid sloshigh in a rectangular tank II: secondary resonance. Math. Models Meth. Appl. Sci. 18, 18451867.CrossRefGoogle Scholar
Higuera, M., Nicolas, J. A. & Vega, J. M. 1994 Linear oscillations of weakly dissipative axisymmetric liquid bridges. Phys. Fluids 6, 438450.Google Scholar
Hill, D. F. 2003 Transient and steady state amplitudes of forced waves in rectangular basins. Phys. Fluids 15, 15761587.Google Scholar
Hocking, L. M. 1987 Reflection of capillary–gravity waves. Wave Motion 9, 217226.Google Scholar
Howell, D., Heath, T., McKenna, C., Hwang, W. & Schatz, M. F. 2000 Measurements of surface-wave damping in a container. Phys. Fluids 12, 322326.Google Scholar
Jones, A. F. 1984 The generation of cross-waves in a long deep channel by parametric resonance. J. Fluid Mech. 138, 5374.Google Scholar
Joseph, D., Funada, T. & Wang, J. 2007 Potential Flows of Viscous and Viscoelastic Fluids. Cambridge University Press.Google Scholar
Kuznetsov, Y. A. 1998 Elements of Applied Bifurcation Theory. Springer.Google Scholar
Martel, C., Nicolás, J. A. & Vega, J. M. 1998 Surface-wave damping in a brimful circular cylinder. J. Fluid Mech. 360, 213228. See also Corrigendum, J. Fluid Mech373, 379.Google Scholar
McGoldrick, L. F. 1965 Resonant interactions among capillary–gravity waves. J. Fluid Mech. 21, 305331.Google Scholar
Miles, J. W. 1984 Resonantly forced surface waves in a circular cylinder. J. Fluid Mech. 149, 1531.Google Scholar
Miles, J. & Henderson, D. 1990 Parametrically forced surface waves. Annu. Rev. Fluid Mech. 22, 143165.Google Scholar
Moisy, F., Rabaud, M. & Slasac, K. 2009 A synthetic Schlieren method for the measurement of the topography of a liquid interface. Exp. Fluids 46, 10211036.Google Scholar
Moisy, F., Michon, G. J., Rabaud, M. & Sultan, E. 2012 Cross-waves induced by the vertical oscillation of a fully immersed vertical plate. Phys. Fluids 24, 022110.Google Scholar
Nicolas, J. A., Rivas, D. & Vega, J. M. 1998 On the steady streaming flow due to high-frequency vibration in nearly inviscid liquid bridges. J. Fluid Mech 147156.Google Scholar
Porter, J., Tinao, I., Laveron-Simavilla, A. & Lopez, C. A. 2012 Pattern selection in a horizontally vibrated container. Fluid Dyn. Res. 44, 065501.Google Scholar
Shemer, L. & Lichter, S. 1990 The mode number dependence of neutral stability cross-waves. Exp. Fluids 9, 148152.Google Scholar
Shemer, L. & Chamesse, M. 1999 Experiments on nonlinear gravity–capillary waves. J. Fluid Mech. 380, 205232.Google Scholar
Taneda, S. 1994 Visual observations of the flow around a half-submerged oscillating circular cylinder. Fluid Dyn. Res. 13, 119151.Google Scholar
Varas, F. & Vega, J. M. 2007 Modulated surface waves in large aspect ratio, horizontally vibrated containers. J. Fluid Mech. 579, 271304.Google Scholar
Vega, J. M, Rüdiger, S. & Viñals, J. 2004 Phenomenological model of weakly damped Faraday waves and the associated mean flow. Phys. Rev. E 70, 0406306.Google Scholar
Vukasinovic, B., Smith, B. & Glezer, A. 2007 Dynamics of a sessile drop in forced vibration. J. Fluid Mech. 587, 395423.Google Scholar
Wu, C. H. & Chen, B. F. 2009 Sloshing waves and resonance modes of fluid in a 3D tank by a time-independent finite difference method. Ocean Engng 36, 500510.Google Scholar
Zhang, W. & Viñals, J. 1997 Pattern formation in weakly damped parametric surface waves. J. Fluid Mech. 336, 301330.CrossRefGoogle Scholar