Hostname: page-component-745bb68f8f-l4dxg Total loading time: 0 Render date: 2025-01-13T03:54:13.308Z Has data issue: false hasContentIssue false

Systematic forcing of large-scale geophysical flows by eddy-topography interaction

Published online by Cambridge University Press:  21 April 2006

Greg Holloway
Affiliation:
Institute of Ocean Sciences, Sidney, BC, Canada, V8L 4B2

Abstract

The interaction of eddies with variations in topography, together with a tendency for large-scale wave propagation, generates a systematic stress which acts upon large-scale mean flows. This stress resists the midlatitude tropospheric westerlies, resists the oceanic Antarctic Circumpolar Current, and may be a dominant mechanism in driving coastal undercurrents. Associated secondary circulation provides a systematic upwelling in coastal oceans, pumping deeper water onto continental shelf areas. The derivation rests in turbulence closure theory and is supported by numerical experiments.

Type
Research Article
Copyright
© 1987 Cambridge University Press

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Aagaard, K. 1984 The Beaufort Undercurrent. In The Alaskan Beaufort Sea: Ecosystems and Environment. Academic.
Beardsley, R. C. & Winant, C. D. 1979 On the mean circulation in the Mid-Atlantic Bight. J. Phys. Oceanogr. 9, 612619.Google Scholar
Brink, K. H. 1986 Topographic drag due to barotropic flow over the continental shelf and slope. J. Phys. Oceanogr. 16, 21502158.Google Scholar
Carmack, E. C. 1977 Water characteristics of the Southern Ocean south of the Polar Front. In A Voyage of Discovery (ed. M. Angel), 696 pp. Pergamon.
Carnevale, G. F. & Frederiksen, J. S. 1987 Nonlinear stability and statistical mechanics of flow over topography. J. Fluid Mech. 175, 157181.Google Scholar
Carnevale, G. F., Frisch, U. & Salmon, R. 1981 H-theorems in statistical fluid dynamics. J. Phys. A 14, 17011718.Google Scholar
Charney, J. G. & De Vore, J. G. 1979 Multiple flow equilibria in the atmosphere and blocking. J. Atmos. Sci. 36, 12051216.Google Scholar
Cox, M. D. 1975 A baroclinic numerical model of the world ocean: preliminary results. In Numerical Models of Ocean Circulation, 364 pp. National Academy of Sciences, Washington, DC.
Dickson, R. R., Gould, W. J., Muller, T. J. & Maillard, C. 1985 Estimates of the mean circulation in the deep (> 2000 m) layer of the eastern North Atlantic. Prog. Oceanogr. 14, 103127.Google Scholar
Egger, J. 1981 Stochastically driven large-scale circulations with multiple equilibria. J. Atmos. Sci. 38, 26062618.Google Scholar
Freeland, H. J. & Denman, K. L. 1982 A topographically controlled upwelling center off southern Vancouver Island. J. Mar. Res. 40, 10691093.Google Scholar
Haidvogel, D. B. & Brink, K. H. 1986 Mean currents driven by topographic drag over the continental shelf and slope. J. Phys. Oceanogr. 16, 21592171.Google Scholar
Hart, J. E. 1979 Barotropic quasigeostrophic flow over anisotropic mountains. J. Atmos. Sci. 36, 17361746.Google Scholar
Herring, J. R. 1977 Two-dimensional topographic turbulence. J. Atmos. Sci. 34, 17311750.Google Scholar
Holloway, G. 1978 A spectral theory of nonlinear barotropic motion above irregular topography. J. Phys. Oceanogr. 8, 414427.Google Scholar
Holloway, G. 1986 Eddies, waves, circulation and mixing: statistical geofluid mechanics. Ann. Rev. Fluid Mech. 18, 91147.Google Scholar
Holloway, G. & Hendershott, M. C. 1977 Stochastic closure for nonlinear Rossby waves. J. Fluid Mech. 82, 747765.Google Scholar
Kraichnan, R. H. 1959 The structure of isotropic turbulence at very high Reynolds Numbers. J. Fluid Mech. 5, 497543.Google Scholar
Kraichnan, R. H. 1971 An almost-Markovian, Galilean-invariant turbulence model. J. Fluid Mech. 47, 513524.Google Scholar
Kundu, P. J. & Allen, J. S. 1976 Some three-dimensional characteristics of low frequency current fluctuations near the Oregon coast. J. Phys. Oceanogr. 6, 181199.Google Scholar
Leslie, D. C. 1973 Developments in the theory of turbulence. Clarendon.
Munk, W. H. & Palmen, E. 1951 Note on the dynamics of the Antarctic Circumpolar Current. Tellus 3, 5355.Google Scholar
Orszag, S. A. 1970 Analytical theories of turbulence. J. Fluid Mech. 41, 363386.Google Scholar
Orszag, S. A. 1971 Numerical simulation of incompressible flows within simple boundaries. I. Galerkin (spectral) representations. Stud. Appl. Maths 50, 293327.Google Scholar
Orszag, S. A. 1977 Statistical theory of turbulence. In Fluid Dynamics, 1973, Les Houches Summer School of Theoretical Physics (ed. R. Balian & J.-L. Peube), 677 pp. Gordon and Breach.
Pouquet, A., Lesieur, M., Andre, J. C. & Basdevant, C. 1975 Evolution of high Reynolds number two-dimensional turbulence. J. Fluid Mech. 72, 305319.Google Scholar
Salmon, R. 1982 Geostrophic turbulence. In Topics in Ocean Physics, Proc. Intl School Physics Enrico Fermi, Varenna, Italy, pp. 3078.
Salmon, R., Holloway, G. & Hendershott, M. C. 1976 The equilibrium statistical mechanics of simple quasi-geostrophic models. J. Fluid Mech. 75, 691703.Google Scholar
Wiin-Nielsen, A. 1979 Steady states and stability properties of a low order barotropic system with forcing and dissipation. Tellus 31, 375386.Google Scholar
Wright, D. G. & Loder, J. W. 1985 A depth-dependent study of the topographic rectification of tidal currents. Geophys. Astrophys. Fluid Dyn. 31, 169220.Google Scholar