Hostname: page-component-cd9895bd7-lnqnp Total loading time: 0 Render date: 2024-12-27T14:58:35.087Z Has data issue: false hasContentIssue false

Thrust efficiency of harmonically oscillating flexible flat plates

Published online by Cambridge University Press:  02 March 2011

PAULO J. S. A. FERREIRA de SOUSA*
Affiliation:
Department of Mechanical and Aerospace Engineering, New Mexico State University, Las Cruces, NM 88003, USA Department of Mechanical Engineering/LASEF, Instituto Superior Técnico, Avenue Rovisco Pais, 1, 1049-001 Lisboa, Portugal
JAMES J. ALLEN
Affiliation:
Department of Mechanical and Aerospace Engineering, New Mexico State University, Las Cruces, NM 88003, USA
*
Present address: Department of Mechanical Engineering, Vanderbilt University, Nashville, TN 37240, USA. Email address for correspondence: ferreiradesousa@gmail.com

Abstract

We consider the efficiency of thrust-producing inextensible membranes with variable bending rigidities. The present study is a numerical investigation of the thrust generation and flow-field characteristics of a two-dimensional flapping flexible membrane, fixed at its leading edge. To study the time-dependent response of the membranes, a fluid/structure solver that couples a compact finite-difference immersed boundary method flow solver with a thin-membrane structural solver was developed. Using a body-fitted grid, external forcing to the structure is calculated from the boundary fluid dynamics. A systematic series of runs of the fluid/structure solver was performed in order to obtain a clear picture of the thrust-producing characteristics of membranes with bending rigidities ranging between EI = 5 × 10−6 and EI = 2 × 10−5 and structural mass coefficients between ρsh = 0.01 and ρsh = 0.04, for a Reynolds number of Re = 851.

Type
Papers
Copyright
Copyright © Cambridge University Press 2011

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Allen, J. J. & Smits, A. J. 2001 Energy harvesting eel. J. Fluids Struct. 15, 629640.Google Scholar
Anderson, J. M. & Chabra, N. 2002 Maneuvering and stability performance of a robotic tuna. Integr. Compar. Biol. 42, 118126.CrossRefGoogle ScholarPubMed
Anderson, J. M., Streitlien, K., Barrett, D. S. & Triantafyllou, M. S. 1998 Oscillating foils of high propulsive efficiency. J. Fluid Mech. 360, 4172.CrossRefGoogle Scholar
Bandyopadhyay, P. R. 2005 Trends in biorobotic autonomous undersea vehicles. IEEE J. Ocean. Engng 30, 109139.Google Scholar
Bandyopadhyay, P. R., Castano, J. M., Rice, J. Q., Philips, R. B., Nedderman, W. H. & Macy, W. K. 1997 Low-speed maneuvering hydrodynamics of fish and small underwater vehicles. Trans. ASME: J. Fluids Engng 119, 136–119.Google Scholar
Buchholz, J. H. & Smits, A. J. 2006 On the evolution of the wake structure produced by a low-aspect-ratio pitching panel. J. Fluid Mech. 546, 433443.Google Scholar
Buchholz, J. H. & Smits, A. J. 2008 The wake structure and thrust performance of a rigid low-aspect-ratio pitching panel. J. Fluid Mech. 603, 331365.CrossRefGoogle ScholarPubMed
Connell, B. S. H. & Yue, D. K. P. 2007 Flapping dynamics of a flag in a uniform stream. J. Fluid Mech. 581, 3367.Google Scholar
Dickinson, M. H. & Götz, K. G. 1993 Unsteady aerodynamic performance of model wings at low Reynolds numbers. J. Expl Biol. 174, 4565.CrossRefGoogle Scholar
Fadlun, E. A., Verzicco, R., Orlandi, P. & Mohd-Yusof, J. 1993 Combined immersed-boundary finite-difference methods for three-dimensional complex flow simulations. J. Comput. Phys. 161, 3560.Google Scholar
Ferreira de Sousa, P. J. S. A, Pereira, J. C. F. & Allen, J. J. 2009 Two-dimensional compact finite difference immersed boundary method. Intl J. Numer. Meth. Fluids 65, 609624.CrossRefGoogle Scholar
Gobat, J. I., Grosenbaugh, M. A. & Triantafyllou, M. S. 2002 Generalized-α time-integration solutions for hanging chain dynamics. J. Engng Mech. 128, 677687.Google Scholar
Gray, J. 1933 Studies in animal locomotion. I. The movement of fish with special reference to the eel. J. Expl Biol. 10, 88104.Google Scholar
Howell, C. T. & Triantafyllou, M. S. 1993 Stable and unstable nonlinear resonant response of hanging chains: theory and experiment. Proc. R. Soc. Lond. A 440, 345364.Google Scholar
Jiménez, J. M., Buchholz, J. H. J., Staples, A. E., Allen, J. J. & Smits, A. J. 2003 Flapping membranes for thrust production. In IUTAM Symp. on Integrated Modeling of Fully Coupled Fluid–Structure Interactions Using Analysis, Computations, and Experiments, Rutgers University, New Brunswick, NJ (ed. Benaroya, H. & Wei, T.), pp. 115–24. Kluwer.Google Scholar
Koochesfahani, M. M. 1989 Vortical patterns in the wake of an oscillating airfoil. AIAA J. 27, 12001205.Google Scholar
Liao, J. C., Beal, D. N., Lauder, G. V. & Triantafyllou, M. S. 2003 Fish exploiting vortices decrease muscle activity. Science 302, 15661569.Google Scholar
Lighthill, M. J. 1970 Aquatic animal propulsion of high hydromechanical efficiency. J. Fluid Mech. 44, 265301.Google Scholar
Lighthill, M. J. 1975 Mathematical Biofluiddynamics. SIAM.Google Scholar
Mohd-Yusof, J. 1997 Combined immersed boundaries/B-splines methods for simulations of flows in complex geometries. Center for Turbulence Research, Annual Research Briefs, pp. 317–327.Google Scholar
Prempraneech, P., Hover, F. S. & Traintafyllou, M. S. 2003 The effect of chordwise flexibility on the thrust and efficiency of a flapping foil. In Proc. 13th Intl Symp. Unmanned Untethered Submersible Technology (UUST), Durham, NH.Google Scholar
Roache, P. J. 1998 Verification of codes and calculations. AIAA J. 36, 696702.Google Scholar
Schnipper, T., Andersen, A. & Bohr, T. 1970 Vortex wakes of a flapping foil. J. Fluid Mech. 633, 411423.Google Scholar
Tornberg, A.-K. & Engquist, B. 1991 Numerical approximations of singular source terms in differential equations J. Comput. Phys. 200, 462488.Google Scholar
Triantafyllou, G. S., Triantafyllou, M. S. & Grosenbaugh, M. A. 1993 Optimal thrust development in oscillating foils with application to fish propulsion. J. Fluids Struct. 7, 205224.CrossRefGoogle Scholar
Triantafyllou, M. S., Hover, F. S., Techet, A. H. & Yue, D. K. P. 2005 Review of hydrodynamic scaling laws in aquatic locomotion and fishlike swimming. Appl. Mech. Rev. 58, 226237.Google Scholar
Triantafyllou, M. S., Techet, A. H. & Hover, F. S. 2004 Review of experimental work in biomimetic foils. IEEE J. Ocean. Engng 29, 585594.Google Scholar
Triantafyllou, M. S., Triantafyllou, G. S. & Gopalkrishnan, R. 1991 Wake mechanics for thrust generation in oscillating foils. Phys. Fluids 12, 28352837.Google Scholar
Triantafyllou, M. S., Triantafyllou, G. S. & Yue, D. K. P. 2000 Hydrodynamics of fish-like swimming. Annu. Rev. Fluid Mech. 32, 3353.Google Scholar
Wu, T. Y. 1961 Swimming of a waving plate. J. Fluid Mech. 10, 321344.Google Scholar
Wu, T. Y. 1971 Hydromechanics of swimming propulsion. Part 1. Swimming of a two dimensional flexible plate at variable forward speeds in an inviscid fluid. J. Fluid Mech. 46, 337355.Google Scholar
Wu, T. Y. 1975 Swimming and Flying in Nature. Reinhold.Google Scholar
Zhang, N. & Zheng, Z. C. 2007 An improved direct-forcing immersed-boundary method for finite difference applications J. Comput. Phys. 221, 250268.Google Scholar
Zhu, L. & Peskin, C. S. 2002 Simulation of flapping flexible filament in a flowing soap film by the immersed boundary method. J. Comput. Phys. 179, 452468.Google Scholar