Published online by Cambridge University Press: 09 June 2014
The excursion number, $\def \xmlpi #1{}\def \mathsfbi #1{\boldsymbol {\mathsf {#1}}}\let \le =\leqslant \let \leq =\leqslant \let \ge =\geqslant \let \geq =\geqslant \def \Pr {\mathit {Pr}}\def \Fr {\mathit {Fr}}\def \Rey {\mathit {Re}}Ex = U_0/\varOmega l$, is a parameter that characterizes the ratio of streamwise fluid advection during a tidal oscillation of amplitude $U_0$ and frequency $\varOmega $ to the streamwise topographic length scale $l$. Direct numerical simulations are performed to study how internal gravity waves and turbulence change when $Ex$ is varied from a low value (typical of a ridge in the deep ocean) to a value of unity (corresponding to energetic tides over a small topographic feature). An isolated obstacle having a smoothed triangular shape and 20 % of the streamwise length at critical slope is considered. With increasing values of $Ex$, the near field of the internal waves loses its beam-like character, the wave response becomes asymmetric with respect to the ridge centre, and transient lee waves form. Analysis of the baroclinic energy balance shows significant reduction in the radiated wave flux in the cases with higher $Ex$ owing to a substantial rise in advection and baroclinic dissipation as well as a decrease in conversion. Turbulence changes qualitatively with increasing $Ex$. In the situation with $Ex \sim 0.1$, turbulence is intensified at the near-critical regions of the slope, and is also significant in the internal wave beams above the ridge where there is intensified shear. At $Ex = O(1)$, the transient lee waves overturn adjacent to the ridge flanks and, owing to convective instability, buoyancy acts as a source for turbulent kinetic energy. The size of the turbulent overturns has a non-monotonic dependence on excursion number: the largest overturns, as tall as twice the obstacle height, occur in the $Ex = 0.4$ case, but there is a substantial decrease of overturn size at larger values of $Ex$ simulated here.
To send this article to your Kindle, first ensure no-reply@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about sending to your Kindle. Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
Find out more about the Kindle Personal Document Service.
To save this article to your Dropbox account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you used this feature, you will be asked to authorise Cambridge Core to connect with your Dropbox account. Find out more about saving content to Dropbox.
To save this article to your Google Drive account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you used this feature, you will be asked to authorise Cambridge Core to connect with your Google Drive account. Find out more about saving content to Google Drive.