Hostname: page-component-745bb68f8f-l4dxg Total loading time: 0 Render date: 2025-01-22T02:30:24.976Z Has data issue: false hasContentIssue false

Tidal flow over topography: effect of excursion number on wave energetics and turbulence

Published online by Cambridge University Press:  09 June 2014

Masoud Jalali
Affiliation:
Mechanical and Aerospace Engineering, University of California, San Diego, La Jolla, CA 92093, USA
Narsimha R. Rapaka
Affiliation:
Mechanical and Aerospace Engineering, University of California, San Diego, La Jolla, CA 92093, USA
Sutanu Sarkar*
Affiliation:
Mechanical and Aerospace Engineering, University of California, San Diego, La Jolla, CA 92093, USA
*
Email address for correspondence: ssarkar@ucsd.edu

Abstract

The excursion number, $\def \xmlpi #1{}\def \mathsfbi #1{\boldsymbol {\mathsf {#1}}}\let \le =\leqslant \let \leq =\leqslant \let \ge =\geqslant \let \geq =\geqslant \def \Pr {\mathit {Pr}}\def \Fr {\mathit {Fr}}\def \Rey {\mathit {Re}}Ex = U_0/\varOmega l$, is a parameter that characterizes the ratio of streamwise fluid advection during a tidal oscillation of amplitude $U_0$ and frequency $\varOmega $ to the streamwise topographic length scale $l$. Direct numerical simulations are performed to study how internal gravity waves and turbulence change when $Ex$ is varied from a low value (typical of a ridge in the deep ocean) to a value of unity (corresponding to energetic tides over a small topographic feature). An isolated obstacle having a smoothed triangular shape and 20 % of the streamwise length at critical slope is considered. With increasing values of $Ex$, the near field of the internal waves loses its beam-like character, the wave response becomes asymmetric with respect to the ridge centre, and transient lee waves form. Analysis of the baroclinic energy balance shows significant reduction in the radiated wave flux in the cases with higher $Ex$ owing to a substantial rise in advection and baroclinic dissipation as well as a decrease in conversion. Turbulence changes qualitatively with increasing $Ex$. In the situation with $Ex \sim 0.1$, turbulence is intensified at the near-critical regions of the slope, and is also significant in the internal wave beams above the ridge where there is intensified shear. At $Ex = O(1)$, the transient lee waves overturn adjacent to the ridge flanks and, owing to convective instability, buoyancy acts as a source for turbulent kinetic energy. The size of the turbulent overturns has a non-monotonic dependence on excursion number: the largest overturns, as tall as twice the obstacle height, occur in the $Ex = 0.4$ case, but there is a substantial decrease of overturn size at larger values of $Ex$ simulated here.

Type
Papers
Copyright
© 2014 Cambridge University Press 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Afanasyev, Y. D. & Peltier, W. R. 1998 The three-dimensionalisation of stratified flow over two-dimensional topography. J. Atmos. Sci. 55, 1939.Google Scholar
Alford, M. H., MacKinnon, J. A., Nash, J. D., Simmons, H., Pickering, A., Klymak, J. M., Pinkel, R., Sun, O., Rainville, L., Musgrave, R., Beitzel, T., Fu, K. & Lu, C. 2011 Energy flux and dissipation in Luzon Strait: two tales of two ridges. J. Phys. Oceanogr. 41, 22112222.Google Scholar
Aucan, J. & Merrifield, M. A. 2008 Boundary mixing associated with tidal and near-inertial internal waves. J. Phys. Oceanogr. 38, 12381252.Google Scholar
Aucan, J., Merrifield, M. A., Luther, D. S. & Flament, P. 2006 Tidal mixing events on the deep flanks of Kaena Ridge, Hawaii. J. Phys. Oceanogr. 36, 12021219.Google Scholar
Baines, P. G. 1995 Topographic Effects in Stratified Flows. Cambridge University Press.Google Scholar
Balmforth, N. J., Ierley, G. R. & Young, W. R. 2002 Tidal conversion by subcritical topography. J. Phys. Oceanogr. 32, 29002914.Google Scholar
Bell, T. H. 1975a Lee waves in stratified fluid with simple harmonic time dependence. J. Fluid Mech. 67, 705722.Google Scholar
Bluteau, C. E., Jones, N. L. & Ivey, G. N. 2011 Dynamics of a tidally forced stratified shear flow on the continental slope. J. Geophys. Res. 116, C11017.Google Scholar
Cacchione, D. A., Pratson, L. F. & Ogston, A. S. 2002 The shaping of continental slopes by internal tides. Science 296, 724727.Google Scholar
Carter, G. S. & Gregg, M. C. 2002 Intense, variable mixing near the head of Monterey Submarine Canyon. J. Phys. Oceanogr. 32, 31453165.Google Scholar
Carter, G. S., Merrifield, M. A., Becker, J. M., Katsumata, K., Gregg, M. C., Luther, D. S., Levine, M. D., Boyd, T. J. & Firing, Y. L. 2008 Energetics of $m_2$ barotropic-to-baroclinic tidal conversion at the Hawaiian Islands. J. Phys. Oceanogr. 38, 22052223.Google Scholar
Echeverri, P. & Peacock, T. 2010 Internal tide generation by arbitrary two-dimensional topography. J. Fluid Mech. 659, 247266.Google Scholar
Garrett, C. & Kunze, E. 2007 Internal tide generation in the deep ocean. Annu. Rev. Fluid Mech. 39, 5787.Google Scholar
Gayen, B. & Sarkar, S. 2010 Turbulence during the generation of internal tide on a critical slope. Phys. Rev. Lett. 104, 218502.Google Scholar
Gayen, B. & Sarkar, S. 2011a Boundary mixing by density overturns in an internal tidal beam. Geophys. Res. Lett. 38, L14608.Google Scholar
Gayen, B. & Sarkar, S. 2011b Direct and large eddy simulations of internal tide generation at a near critical slope. J. Fluid Mech. 681, 4879.Google Scholar
Gostiaux, L. & Dauxois, T. 2007 Laboratory experiments on the generation of internal tidal beams over steep slopes. Phys. Fluids 19, 028102.Google Scholar
Kang, D. & Fringer, O. 2012 Energetics of barotropic and baroclinic tides in the Monterey Bay area. J. Phys. Oceanogr. 42, 272290.Google Scholar
Klymak, J. M., Moum, J. N., Nash, J. D., Kunze, E., Girton, J. B., Carter, G. S., Lee, C. M., Sanford, T. B. & Gregg, M. C. 2006 An estimate of tidal energy lost to turbulence at the Hawaiian ridge. J. Phys. Oceanogr. 36, 11481164.Google Scholar
Klymak, J. M., Pinkel, R. & Rainville, L. 2008 Direct breaking of the internal tide near topography: Kaena ridge, Hawaii. J. Phys. Oceanogr. 38, 380399.Google Scholar
Kunze, E. & Toole, J. M. 1997 Tidally driven vorticity, diurnal shear and turbulence atop Fieberling Seamount. J. Phys. Oceanogr. 27, 26632693.Google Scholar
Ledwell, J. R., Montgomery, E. T., Polzin, K. L., St Laurent, L. C., Schmitt, R. W. & Toole, J. M. 2000 Evidence for enhanced mixing over rough topography in the abyssal ocean. Nature 403, 179182.Google Scholar
Legg, S. & Huijts, K. M. H. 2006 Preliminary simulations of internal waves and mixing generated by finite amplitude tidal flow over isolated topography. Deep-Sea Res. II 53, 140156.Google Scholar
Legg, S. & Klymak, J. 2008 Internal hydraulic jumps and overturning generated by tidal flows over a tall steep ridge. J. Phys. Oceanogr. 38, 19491964.CrossRefGoogle Scholar
Levine, M. D. & Boyd, T. J. 2006 Tidally forced internal waves and overturns observed on a slope: results from HOME. J. Phys. Oceanogr. 36, 11841201.Google Scholar
Lim, K., Ivey, G. N. & Jones, N. L. 2010 Experiments on the generation of internal waves over continental shelf topography. J. Fluid Mech. 663, 385400.Google Scholar
Llewellyn Smith, S. G. & Young, W. R. 2002 Conversion of the barotropic tide. J. Phys. Oceanogr. 32, 15541566.Google Scholar
Lueck, R. G. & Mudge, T. D. 1997 Topographically induced mixing around a shallow seamount. Science 276, 18311833.Google Scholar
Moum, J. N., Caldwell, D. R., Nash, J. D. & Gunderson, G. D. 2002 Observations of boundary mixing over the continental slope. J. Phys. Oceanogr. 32, 21132130.Google Scholar
Munk, W. & Wunsch, C. 1998 Abyssal recipes II: energetics of tidal and wind mixing. Deep-Sea Res. I 45, 19772010.Google Scholar
Nash, J. D., Alford, M. H., Kunze, E., Martini, K. & Kelly, S. 2007 Hotspots of deep ocean mixing on the Oregon continental slope. Geophys. Res. Lett. 34, L01605.Google Scholar
Pétrélis, F., Llewellyn Smith, S. G. & Young, W. R. 2006 Tidal conversion at submarine ridge. J. Phys. Oceanogr. 36, 10531071.CrossRefGoogle Scholar
Polzin, K., Oakey, N. S., Toole, J. M. & Schmitt, R. W. 1996 Fine structure and microstructure characteristics across the north west Atlantic subtropical front. J. Geophys. Res. 101, 1411114121.Google Scholar
Polzin, K. L., Toole, J. M., Ledwell, J. R. & Schmitt, R. W. 1997 Spatial variability of turbulent mixing in the abyssal ocean. Science 276, 9396.Google Scholar
Rapaka, N. R., Gayen, B. & Sarkar, S. 2013 Tidal conversion and turbulence at a model ridge: direct and large eddy simulation. J. Fluid Mech. 715, 181209.Google Scholar
Rudnick, D. L., Boyd, T. J., Brainard, R. E., Carter, G. S., Egbert, G. D., Gregg, M. C., Holloway, P. E., Klymak, J. M., Kunze, E., Lee, C. M., Levine, M. D., Luther, D. S., Martin, J. P., Merrifield, M. A., Moum, J. N., Nash, J. D., Pinkel, R., Rainville, L. & Sanford, T. B. 2003 From tides to mixing along the Howaiian Ridge. Science 301, 355357.Google Scholar
Saenko, O. A. & Merryfield, W. J. 2005 On the effect of topographically enhanced mixing on the global ocean circulation. J. Phys. Oceanogr. 35, 826834.Google Scholar
Simmons, H. L., Jayne, S. R., St Laurent, L. C. & Weaver, A. J. 2004 Tidally driven mixing in a numerical model of the ocean general circulation. Ocean Model. 6, 245263.Google Scholar
St Laurent, L. C., Stringer, S., Garrett, C. & Perrault-Joncas, D. 2003 The generation of internal tides at abrupt topography. Deep-Sea Res. I 50, 9871003.Google Scholar
St Laurent, L. C., Toole, J. M. & Schmitt, R. W. 2001 Buoyancy forcing by turbulence above rough topography in the abyssal Brazil Basin. J. Phys. Oceanogr. 31, 34763495.Google Scholar
Wain, D. J., Gregg, M. C., Alford, M. H., Lien, R.-C., Hall, R. A. & Carter, G. S. 2013 Propagation and dissipation of the internal tide in upper Monterey Canyon. J. Geophys. Res. 118, 123.Google Scholar
Winters, K. B. & Armi, L. 2013 The response of a continuously stratified fluid to an oscillating flow past an obstacle. J. Fluid Mech. 727, 83118.Google Scholar
Yakovenko, S. N., Thomas, T. G. & Castro, I. P. 2011 A turbulent patch arising from a breaking internal wave. J. Fluid Mech. 677, 103133.Google Scholar
Zhang, H. P., King, B. & Swinney, H. L. 2008 Resonant generation of internal waves on a model continental slope. Phys. Rev. Lett. 100, 244504.Google Scholar