Hostname: page-component-cd9895bd7-7cvxr Total loading time: 0 Render date: 2024-12-27T14:39:53.650Z Has data issue: false hasContentIssue false

Transport equation for the mean turbulent energy dissipation rate in low-$R_{\lambda }$ grid turbulence

Published online by Cambridge University Press:  17 April 2014

L. Djenidi*
Affiliation:
Discipline of Mechanical Engineering, School of Engineering, University of Newcastle, Newcastle, 2308 NSW, Australia
R. A. Antonia
Affiliation:
Discipline of Mechanical Engineering, School of Engineering, University of Newcastle, Newcastle, 2308 NSW, Australia
*
Email address for correspondence: lyazid.djenidi@newcastle.edu.au

Abstract

A direct numerical simulation (DNS) based on the lattice Boltzmann method (LBM) is carried out in low-Reynolds-number grid turbulence to analyse the mean turbulent kinetic energy dissipation rate, $\overline{\epsilon }$, and its transport equation during decay. All the components of $\overline{\epsilon }$ and its transport equation terms are computed, providing for the first time the opportunity to assess the contribution of each term to the decay. The results indicate that although small departures from isotropy are observed in the components of $\overline{\epsilon }$ and its destruction term, there is sufficient compensation among the components for these two quantities to satisfy isotropy to a close approximation. A short distance downstream of the grid, the transport equation of $\overline{\epsilon }$ simplifies to its high-Reynolds-number homogeneous and isotropic form. The decay rate of $\overline{\epsilon }$ is governed by the imbalance between the production due to vortex stretching and the destruction caused by the action of viscosity, the latter becoming larger than the former as the distance from the grid increases. This imbalance, which is not constant during the decay as argued by Batchelor & Townsend (Proc. R. Soc. Lond. A, vol. 190, 1947, pp. 534–550), varies according to a power law of $x$, the distance downstream of the grid. The non-constancy implies a lack of dynamical similarity in the mechanisms controlling the transport of $\overline{\epsilon }$. This is consistent with the fact that the power-law-decay ($\overline{q^2} \sim x^n$) exponent $n$ is not equal to $-$1. It is actually close to $-$1.6, a value in keeping with the relatively low Reynolds number of the simulation. These results highlight the importance of the imbalance in establishing the value of $n$. The $\overline{\epsilon }$-transport equation is also analysed in relation to the power-law decay. The results show that the power-law exponent $n$ is controlled by the imbalance between production and destruction. Further, a relatively straightforward analysis provides information on the behaviour of $n$ during the entire decay process and an interesting theoretical result, which is yet to be confirmed, when $R_{\lambda } \rightarrow 0 $, namely, the destruction coefficient $G$ is constant and its value must lie between $15/7$ and $30/7$. These two limits encompass the predictions for the final period of decay by Batchelor & Townsend (1947) and Saffman (J. Fluid Mech., vol. 27, 1967, pp. 581–593).

Type
Papers
Copyright
© 2014 Cambridge University Press 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Abe, H., Antonia, R. A. & Kawamura, H. 2009 Correlation between small-scale velocity and scalar fluctuations in a turbulent channel flow. J. Fluid Mech. 627, 132.Google Scholar
Antonia, R. A., Lee, S. K., Djenidi, L., Lavoie, P. & Danaila, L. 2013 Invariants for slightly heated decaying grid turbulence. J. Fluid Mech. 727, 379406.CrossRefGoogle Scholar
Antonia, R. A. & Orlandi, P. 2004 Similarity of decaying isotropic turbulence with a passive scalar. J. Fluid Mech. 505, 123151.CrossRefGoogle Scholar
Antonia, R. A., Orlandi, P. & Zhou, T. 2002 Assessment of three-components vorticity probe in decaying turbulence. Exp. Fluids 33, 384390.Google Scholar
Antonia, R. A., Smalley, R. F., Zhou, T., Anselmet, F. & Danaila, L. 2004 Similarity solution of temperature structure functions in decaying homogeneous isotropic turbulence. Phys. Rev. E 69, 016305.CrossRefGoogle ScholarPubMed
Antonia, R. A., Zhou, T., Danaila, L. & Anselmet, F. 2002 Scaling of the mean energy dissipation rate equation in grid turbulence. J. Turbul. 3, 1468-5248(02)52345-6.Google Scholar
Antonia, R. A., Zhou, T. & Zhu, Y. 1998 Three-component vorticity measurements in a turbulent grid flow. J. Fluid Mech. 374, 2957.CrossRefGoogle Scholar
Batchelor, G. K. & Townsend, A. A. 1947 Decay of vorticity in isotropic turbulence. Proc. R. Soc. Lond. A 190, 534550.Google Scholar
Batchelor, G. K. & Townsend, A. A. 1948a Decay of isotropic turbulence in the initial period. Proc. R. Soc. Lond. A 193, 539558.Google Scholar
Batchelor, G. K. & Townsend, A. A. 1948b Decay of isotropic turbulence in the final period. Proc. R. Soc. Lond. A 194, 527543.Google Scholar
Bennett, J. C. & Corrsin, S. 1978 Small Reynolds number nearly isotropic turbulence in a straight duct and a contraction. Phys. Fluids 21, 21292140.Google Scholar
Bradshaw, P. & Perot, J. B. 1993 A note on turbulent energy dissipation in the viscous wall region. Phys. Fluids A 5, 33053306.Google Scholar
Burattini, P., Lavoie, P., Agrawal, A., Djenidi, L. & Antonia, R. A. 2006 On the power law of decaying homogeneous isotropic turbulence at low $R_{\lambda }$ . Phys. Rev. E 73, 066304.Google Scholar
Champagne, F. H. 1978 The fine-scale structure of the turbulent velocity field. J. Fluid Mech. 86 (1), 67108.Google Scholar
Chassaing, P. 2000 Turbulence en Mecanique des Fluides. (Collection Polytech) , Cépaduès-Éditions.Google Scholar
Chen, S. & Doolen, G. D. 1998 Lattice Boltzmann method for fluid flows. Annu. Rev. Fluid Mech. 30, 329364.Google Scholar
Comte-Bellot, G. & Corrsin, S. 1971 Simple Eulerian time correlation of full- and narrow band velocity signals in grid generated, ‘isotropic’ turbulence. J. Fluid Mech. 48, 273337.CrossRefGoogle Scholar
Corrsin, S. 1953 Interpretation of viscous terms in the turbulent energy equation. J. Aeronaut. Sci. 20, 853854.Google Scholar
Djenidi, L. 2006 Lattice Boltzmann simulation of grid-generated turbulence. J. Fluid Mech. 552, 1335.Google Scholar
Djenidi, L. 2008 Study of the structure of a turbulent crossbar near-wake by means of Lattice Boltzmann. Phys. Rev. E 77, 036310.Google Scholar
Djenidi, L., Tardu, S. & Antonia, R. A. 2013a Relation between temporal and spatial averages in grid turbulence. J. Fluid Mech. 730, 593606.Google Scholar
Djenidi, L., Tardu, S. & Antonia, R. A.2013b Breakdown of Kolmogorov’s scaling in grid turbulence. In 14th European Turbulence Conference, 10–14 September, Lyon, France pp. 593–606.Google Scholar
Dryden, H. L. 1943 A review of the statistical theory of turbulence. Q. Appl. Maths 1, 742.Google Scholar
Frisch, U., Hasslacher, B. & Pomeau, Y. 1986 Lattice gas automata for the Navier–Stokes equations. Phys. Rev. Lett. 56, 15051508.Google Scholar
AGeorge, W. K. 1992 The decay of homogeneous isotropic turbulence. Phys. Fluids 4, 14921509.Google Scholar
Hanjalic, K. & Launder, B. E. 1972 A Reynolds stress model of turbulence and its application to thin shear flows. J. Fluid Mech. 52, 609638.CrossRefGoogle Scholar
Hou, S., Sterlin, J., Chen, S. & Doolen, G. D. 1996 A lattice Boltzmann subgrid model for high Reynolds number flows. In Pattern Formation and Lattice Gas Automata (ed. Lawniczak, A. T. & Kapral, R.), Field Institute Communications, vol. 6, pp. 151166. American Mathematical Society, Also arXiv:comp-gas/9401004v1.Google Scholar
Huang, M.-J. & Leonard, A. 1994 Power-law decay of homogeneous turbulence at low Reynolds number. Phys. Fluids 6, 37653775.Google Scholar
Kamruzzaman, Md., Djenidi, L. & Antonia, R. A. 2013 Behaviours of energy spectrum at low Reynolds numbers in grid turbulence. International Journal of Mechanical, Industrial Science and Engineering 7, 472476.Google Scholar
Kang, H. S., Chester, S. & Meneveau, C. 2003 Decaying turbulence in an active-grid generated flow and comparisons with large-eddy simulation. J. Fluid Mech. 480, 129160.CrossRefGoogle Scholar
von Kármán, T. 1937 The fundamentals of statistical theory of turbulence. J. Aero. Sci. 4, 131138.Google Scholar
Kolmogorov, A. 1941 On the degeneration (decay) of isotropic turbulence in an incompressible viscous fluid. Dokl. Akad. Nauk SSSR 31, 538540.Google Scholar
Krogstad, P.-A. & Davidson, P. A. 2010 Is grid turbulence Saffman turbulence? J. Fluid Mech. 642, 373394.Google Scholar
Larssen, J. V. & Devenport, W. J. 2011 On the generation of large-scale homogeneous turbulence. Exp. Fluids 50, 12071223.CrossRefGoogle Scholar
Lavoie, P., Djenidi, L. & Antonia, R. A. 2007 Effects of initial conditions in decaying turbulence generated by passive grids. J. Fluid Mech. 585, 395420.Google Scholar
Lee, S. K., Benaissa, A., Djenidi, L., Lavoie, P. & Antonia, R. A. 2012 Scaling range of velocity and passive scalar spectra in grid turbulence. Phys. Fluids 24, 075101.CrossRefGoogle Scholar
Lee, S. K., Djenidi, L., Antonia, R. A. & Danaila, L. 2014 On the destruction coefficients for slightly heated decaying grid turbulence. Int. Jnl Heat and Fluid Flow 43, 129136.Google Scholar
Lin, C. C. & Reid, W. H. 1963 Turbulent flow, Theoretical aspects. In Handbuch der Physik (ed. Flugge, S. & Truesdell, C. A.), vol. 8, p. 438. Springer.Google Scholar
Ling, S. C. & Huang, T. T. 1970 Decay of weak turbulence. Phys. Fluids 13, 29122924.Google Scholar
Mansour, N. N., Kim, J. & Moin, P.1987 Reynolds-stress and dissipation rate budgets in a turbulent channel flow NASA Tech. Mem. 89451.Google Scholar
Mansour, N. N. & Wray, A. A. 1994 Decay of isotropic turbulence at low Reynolds number. Phys. Fluids 6, 808813.Google Scholar
Meldi, M. & Sagaut, P. 2013 Further insights into self-similarity and self-preservation in freely decaying isotropic turbulence. J. Turbul. 14, 2453.Google Scholar
Mohamed, M. S. & LaRue, L. 1990 The decay power law in grid-generated turbulence. J. Fluid Mech. 219, 195214.CrossRefGoogle Scholar
Mydlarsky, L. & Warhaft, Z. 1996 On the onset of high-Reynolds number grid-generated wind tunnel turbulence. J. Fluid Mech. 320, 331368.Google Scholar
Reid, W. H. 1956 On the approach to the final period of decay in isotropic turbulence according to Heisenberg’s transfer theory. Proc. Natl Acad. Sci. 42, 559563.Google Scholar
Ristorcelli, J. R. & Livescu, D. 2004 Decay of isotropic turbulence: fixed points and solutions for nonconstant $G ~ R_{\lambda }$ palinstrophy. Phys. Fluids 16, 34873490.Google Scholar
Rubinstein, R. & Clark, T. T. 2005 Self-similar turbulence evolution and the dissipation rate transport equation. Phys. Fluids 17, 095104.CrossRefGoogle Scholar
Saffman, P. G. 1967 The large-scale structure of homogeneous turbulence. J. Fluid Mech. 27, 581593.Google Scholar
Speziale, C. G. & Bernard, P. 1992 The energy decay in self-preserving isotropic turbulence revisited. J. Fluid Mech. 241, 645667.Google Scholar
Succi, S. 2001 The lattice Boltzmann equation for fluid dynamics and beyond. In Numerical Mathematics and Scientific Computation, Oxford University Press.Google Scholar
Tavoularis, S., Bennett, J. C. & Corrsin, S. 1978 Velocity-derivative skewness in small Reynolds number, nearly isotropic turbulence. J. Fluid Mech. 88, 6369.Google Scholar
Tennekes, H. & Lumley, J. L. 1974 First Course in Turbulence. 3rd edn. MIT Press.Google Scholar
Wyngaard, J. C. 2010 Turbulence in the Atmosphere. Cambridge University Press.Google Scholar
Zhou, T. & Antonia, R. A. 2000 Reynolds number dependence of the small-scale structure of grid turbulence. J. Fluid Mech. 406, 81107.Google Scholar
Zhou, T., Antonia, R. A. & Chua, L. P. 2002 Performance of a probe for measuring turbulent energy and temperature dissipation rates. Exp. Fluids 33, 334345.Google Scholar
Zhou, T., Antonia, R. A., Danaila, L. & Anselmet, F. 2000 Transport equations for the mean energy and temperature dissipation rates in grid turbulence. Exp. Fluids 28, 143151.CrossRefGoogle Scholar