Hostname: page-component-78c5997874-8bhkd Total loading time: 0 Render date: 2024-11-10T09:00:30.480Z Has data issue: false hasContentIssue false

Two-dimensional flow of foam around a circular obstacle: local measurements of elasticity, plasticity and flow

Published online by Cambridge University Press:  07 August 2007

BENJAMIN DOLLET
Affiliation:
Laboratoire de Spectrométrie Physique, BP 87, 38402 Saint-Martin-d'Hères Cedex, France Physics of Fluids, University of Twente, PO Box 217, 7500 AE Enschede, The Netherlands
FRANÇOIS GRANER
Affiliation:
Laboratoire de Spectrométrie Physique, BP 87, 38402 Saint-Martin-d'Hères Cedex, France

Abstract

We investigate the two-dimensional flow of a liquid foam around a circular obstacle by measuring all the local fields necessary to describe this flow: velocity, pressure, and bubble deformations and rearrangements. We show how our experimental set-up, a quasi-two-dimensional ‘liquid pool’ system, is adapted to the determination of these fields: the velocity and bubble deformations are easy to measure from two-dimensional movies, and the pressure can be measured by exploiting a specific feature of this system, a two-dimensional effective compressibility. To describe accurately neighbour swapping (so-called ‘T1’ processes), we propose a new, tensorial descriptor. All these quantities are evaluated via an averaging procedure that we justify by showing that the fluctuations of the fields are essentially Gaussian. The flow is extensively studied in a reference experimental case; the velocity presents an overshoot in the wake of the obstacle, and the pressure is maximum at the leading side and minimal at the trailing side. The study of the elastic deformations and of the velocity gradients shows that the transition between plug flow and yielded regions is smooth. Our tensorial description of T1s highlights their correlation both with the bubble deformations and the velocity gradients. A salient feature of the flow, notably for the velocity and T1 distribution, is a marked fore–aft asymmetry, the signature of the elastic behaviour of the foam. We show that the results do not change qualitatively when various control parameters (flow rate, bubble area, fluid fraction, bulk viscosity, obstacle size and boundary conditions) vary, identifying a robust quasi-static regime. These results are discussed in the framework of the foam rheology literature. A movie is available with the online version of the paper.

Type
Papers
Copyright
Copyright © Cambridge University Press 2007

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Arigo, M. T. & McKinley, G. H. 1998 An experimental investigation of negative wakes behind spheres settling in a shear-thinning viscoelastic fluid. Rheol. Acta 37, 307327.Google Scholar
Asipauskas, M., Aubouy, M., Glazier, J. A., Graner, F. & Jiang, Y. 2003 A texture tensor to quantify deformations: The example of two-dimensional flowing foams. Granular Matt. 5, 7174.CrossRefGoogle Scholar
Aubouy, M., Jiang, Y., Glazier, J. A. & Graner, F. 2003 A texture tensor to quantify deformations. Granular Matt. 5, 6770.CrossRefGoogle Scholar
Batchelor, G. K. 1970 The stress system in a suspension of force-free particles. J. Fluid Mech. 41, 545570.Google Scholar
Beaulne, M. & Mitsoulis, E. 1997 Creeping motion of a sphere in tubes filled with Herschel–Bulkley fluids. J. Non-Newtonian Fluid Mech. 72, 5571.CrossRefGoogle Scholar
Brakke, K. 1992 The Surface Evolver. Exp. Maths 1, 141165.CrossRefGoogle Scholar
de Bruyn, J. R. 2004 Transient and steady-state drag in foam. Rheol. Acta 44, 150159.CrossRefGoogle Scholar
Bush, M. B. 1994 On the stagnation flow behind a sphere in a shear-thinning viscoelastic fluid. J. Non-Newtonian Fluid Mech. 55, 229247.Google Scholar
Buzza, D. M. A., Lu, C. Y. D. & Cates, M. E. 1995 Linear shear rheology of incompressible foams. J. Phys. II Paris 5, 3752.Google Scholar
Cantat, I. & Delannay, R. 2003 Dynamical transition induced by large bubbles in two-dimensional foam flows. Phys. Rev. E 67, 031501.CrossRefGoogle ScholarPubMed
Cantat, I. & Delannay, R. 2005 Dissipative flows of two-dimensional foam. Eur. Phys. J. E 18, 5567.Google Scholar
Cantat, I., Kern, N. & Delannay, R. 2004 Dissipation in foam flowing through narrow channels. Europhys. Lett. 65, 726732.Google Scholar
Cantat, I. & Pitois, O. 2005 Mechanical probing of liquid foam ageing. J. Phys. Condens. Matt. 17, S3455S3461.CrossRefGoogle Scholar
Cantat, I., Poloni, C. & Delannay, R. 2006 Experimental evidence of flow destabilization in a two-dimensional bidisperse foam. Phys. Rev. \rm E 73, 011505.Google Scholar
Clancy, R. J., Janiaud, É., Weaire, D. & Hutzler, S. 2006 The response of two-dimensional foams to continuous applied shear in a Couette rheometer. Eur. Phys. J. E 21, 123132.CrossRefGoogle Scholar
Cohen-Addad, S., HÖhler, R. & Khidas, Y. 2004 Origin of the slow linear viscoelastic response of aqueous foams. Phys. Rev. Lett. 93, 028302.CrossRefGoogle ScholarPubMed
Courty, S., Dollet, B., Elias, F., Heinig, P. & Graner, F. 2003 Two-dimensional shear modulus of a Langmuir foam. Europhys. Lett. 64, 709715.CrossRefGoogle Scholar
Cox, S. J., Alonso, M. D., Hutzler, S. & Weaire, D. 2000 The Stokes experiment in a foam. In Proc. 3rd Euroconference on Foams, Emulsions and their Applications. (ed. Zitha, P. L. J., Banhard, J. & Verbist, P. L. M. M.), pp. 282289. MIT Verlag, Bremen.Google Scholar
Cox, S. J., Vaz, M. F. & Weaire, D. 2003 Topological changes in a two-dimensional cluster. Eur. Phys. J. \rm E 11, 2935.CrossRefGoogle Scholar
Debrégeas, G., Tabuteau, H. & di Meglio, J. M. 2001 Deformation and flow of a two-dimensional foam under continuous shear. Phys. Rev. Lett. 87, 178305.CrossRefGoogle ScholarPubMed
Denkov, N. D., Subramanian, V., Gurovich, D. & Lips, A. 2005 Wall slip and viscous dissipation in sheared foams: Effect of surface mobility. Colloid. Surf. \rm A 263, 129145.CrossRefGoogle Scholar
Derjaguin, B. 1933 Die elastischen Eigenschaften der Schäume. Kolloid Z. 64, 16.CrossRefGoogle Scholar
Dollet, B. 2005 Écoulements bidimensionnels de mousse autour d'obstacles, PhD thesis, unpublished, available at http://www-lsp.ujf-grenoble.fr/pdf/theses/dtbn.pdf.Google Scholar
Dollet, B., Aubouy, M. & Graner, F. 2005 a Anti-inertial lift in foams: A signature of the elasticity of complex fluids. Phys. Rev. Lett. 95, 168303.CrossRefGoogle ScholarPubMed
Dollet, B., Durth, M. & Graner, F. 2006 Flow of foam past an elliptical obstacle, Phys. Rev. E 73, 061404.CrossRefGoogle ScholarPubMed
Dollet, B., Elias, F., Quilliet, C., Huillier, A., Aubouy, M. & Graner, F. 2005 b Two-dimensional flows of foam: Drag exerted on circular obstacles and dissipation. Colloids Surf. A 263, 101110.Google Scholar
Dollet, B., Elias, F., Quilliet, C., Raufaste, C., Aubouy, M. & Graner, F. 2005 c Two-dimensional flow of foam around an obstacle: Force measurements. Phys. Rev. E 71, 031403.Google Scholar
Dou, H. S. & Phan-Thien, N. 2003 Negative wake in the uniform flow past a cylinder. Rheol. Acta 42, 383409.Google Scholar
Durand, M. & Stone, H. A. 2006 Relaxation time of the topological T1 process in a two-dimensional foam. Phys. Rev. Lett. 97, 226101.Google Scholar
Durian, D. J. 1997 Bubble-scale model of foam mechanics: Melting, nonlinear behavior, and avalanches. Phys. Rev. \rm E 55, 17391751.CrossRefGoogle Scholar
Gopal, A. D. & Durian, D. J. 1999 Shear-induced “melting” of an aqueous foam. J. Colloid Interface Sci. 213, 169178.CrossRefGoogle ScholarPubMed
Gopal, A. D. & Durian, D. J. 2003 Relaxing in foam. Phys. Rev. Lett. 91, 188303.CrossRefGoogle ScholarPubMed
Groisman, A. & Steinberg, V. 2000 Elastic turbulence in a polymer solution flow. Nature 405, 5355.CrossRefGoogle Scholar
Gueslin, B., Talini, L., Herzhaft, B., Peysson, Y., Allain, C. 2006 Flow induced by a sphere settling in an aging yield-stress fluid. Phys. Fluids 18, 103101.Google Scholar
Guyon, É., Hulin, J. P. & Petit, L. 2001 Hydrodynamique Physique. EDP Sciences/CNRS Éditions, Paris.Google Scholar
Harlen, O. G. 2002 The negative wake behind a sphere sedimenting through a viscoelastic fluid. J. Non-Newtonian Fluid Mech. 108, 411430.CrossRefGoogle Scholar
Hassager, O. 1979 Negative wake behind bubbles in non-Newtonian fluids. Nature 279, 402403.CrossRefGoogle Scholar
HÖhler, R. & Cohen-Addad, S. 2005 Rheology of liquid foams J. Phys. Condens. Matter 17, R1041R1069.CrossRefGoogle Scholar
HÖhler, R., Cohen-Addad, S. & Labiausse, V. 2004 Constitutive equation to describe the nonlinear elastic response of aqueous foams and concentrated emulsions. J. Rheol. 48, 679690.CrossRefGoogle Scholar
Janiaud, É. & Graner, F. 2005 Foam in a two-dimensional Couette shear: A local measurement of bubble deformation. J. Fluid Mech. 532, 243267.Google Scholar
Janiaud, É., Weaire, D. & Hutzler, S. 2006 Two-dimensional foam rheology with viscous drag. Phys. Rev. Lett. 97, 038302.Google Scholar
Kabla, A. & Debrégeas, G. 2003 Local stress relaxation and shear-banding in a dry foam under shear. Phys. Rev. Lett. 90, 258303.CrossRefGoogle Scholar
Kern, N., Weaire, D., Martin, A., Hutzler, S. & Cox, S. J. 2004 Two-dimensional viscous froth model for foam dynamics, Phys. Rev. \rm E 70, 041411.Google Scholar
Khan, S. A. & Armstrong, R. C. 1986 Rheology of foams. I. Theory for dry foams. J. Non-Newtonian Fluid Mech. 22, 122.CrossRefGoogle Scholar
Khan, S. A. & Prud'homme, R. 1996 Foams, Dekker.Google Scholar
Kim, J. M., Kim, C., Chung, C., Ahn, K. H. & Lee, S. J. 2005 Negative wake generation of FENE–CR fluids in uniform and Poiseuille flow past a cylinder. Rheol. Acta 44, 600613.Google Scholar
Kraynik, A. M. 1988 Foam flows. Annu. Rev. Fluid Mech. 20, 325357.CrossRefGoogle Scholar
Landau, L. D. & Lifshitz, E. M. 1981 Theory of Elasticity, 2nd edn. Pergamon.Google Scholar
Langer, S. A. & Liu, A. J. 1997 Effect of random packing on stress relaxation in foam. J. Phys. Chem. B 101, 86678671.Google Scholar
Larson, R. G. 1999 The Structure and Rheology of Complex Fluids. Oxford University Press.Google Scholar
Lauridsen, J., Twardos, M. & Dennin, M. 2002 Shear-induced stress relaxation in a two-dimensional wet foam. Phys. Rev. Lett. 89, 098303.CrossRefGoogle Scholar
Lauridsen, J., Chanan, G. & Dennin, M. 2004 Velocity profiles in slowly sheared bubble rafts. Phys. Rev. Lett. 93, 018303.CrossRefGoogle Scholar
Marmottant, P. & Graner, F. 2007 A quasistatic model for an elastic, plastic, viscous foam. Eur. Phys. J. \rm B. (submitted).Google Scholar
Mason, T. G., Bibette, J. & Weitz, D. A. 1995 Elasticity of compressed emulsions. Phys. Rev. Lett. 75, 20512054.CrossRefGoogle ScholarPubMed
Mason, T. G., Bibette, J. & Weitz, D. A. 1996 Yielding and flow of monodisperse emulsions. J. Colloid Interface Sci. 179, 439448.Google Scholar
Mitsoulis, E. 2004 On creeping drag flow of a viscoplatic fluid past a circular cylinder: Wall effects. Chem. Engng Sci. 59, 789800.CrossRefGoogle Scholar
Picard, G., Adjari, A., Lequeux, F. & Bocquet, L. 2004 Elastic consequences of a single plastic event: A step towards the microscopic modeling of the flow of yield stress fluid. Eur. Phys. J. \rm E 15, 371381.CrossRefGoogle Scholar
Pratt, E. & Dennin, M. 2003 Nonlinear stress and fluctuation dynamics of sheared disordered wet foam Phys. Rev. \rm E 67, 054102.Google ScholarPubMed
Princen, H. M. 1983 Rheology of foams and highly concentrated emulsions. I. Elastic properties and yield stress of a cylindrical model system. J. Colloid Interface Sci. 91, 160175.CrossRefGoogle Scholar
Princen, H. M. 1985 Rheology of foams and highly concentrated emulsions. II. Experimental study of the yield stress and wall effects for concentrated oil-in-water emulsions. J. Colloid. Interface. Sci. 105, 150171.Google Scholar
Raufaste, C., Dollet, B., Cox, S. J., Graner, F. & Jiang, Y. 2007 Yield drag in a two-dimensional foam around a circular obstacle: Effect of fluid fraction. Eur. Phys. J. E (to appear).Google Scholar
Roquet, N. & Saramito, P. 2003 An adaptive finite element mathod for Bingham fluid flows around a cylinder Comput. Methods Appl. Mech. Engng 192, 33173341.CrossRefGoogle Scholar
Saint-Jalmes, A. & Durian, D. J. 1999 Vanishing elasticity for wet foams: Equivalence with emulsions and role of polydispersity. J. Rheol. 43, 14111422.CrossRefGoogle Scholar
Sollich, P., Lequeux, F., Hébraud, P. Hébraud, P. & Cates, M. E. 1997 Rheology of soft glassy materials. Phys. Rev. Lett. 78, 20202023.CrossRefGoogle Scholar
Stamenović, D. & Wilson, T. A. 1984 The shear modulus of liquid foam. J. Appl. Mech. 51, 229231.Google Scholar
Takeshi, O. & Sekimoto, K. 2005 Internal stress in a model elastoplastic fluid. Phys. Rev. Lett. 95, 108301.CrossRefGoogle Scholar
Vaz, M. F. & Cox, S. J. 2005 Two-bubble instabilities in quasi-two-dimensional foams. Phil. Mag. Lett. 85, 415425.CrossRefGoogle Scholar
Wang, Y., Krishan, K. & Dennin, M. 2006 Impact of boundaries on velocity profiles in bubble rafts. Phys. Rev. E 73, 031401.CrossRefGoogle ScholarPubMed
Weaire, D. & Hutzler, S. 1999 The Physics of Foams. Oxford University Press.Google Scholar

Dollet and Graner supplementary movie

Movie 1. Flow of a monodisperse foam in a channel (width 10.0 cm) around a circular obstacle (diameter 3.0 cm). The parameters of the flow are the following: flow rate 176 ml/min, bubble area 16.0 mm$^2$, foam thickness 3.5 mm and solution viscosity 1.06 mm$^2$/s. This movie reveals the plastic character of the flow: the foam flows around the obstacle mainly thanks to multiple bubble rearrangements.

Download Dollet and Graner supplementary movie(Video)
Video 8.3 MB

Dollet and Graner supplementary movie

Movie 1. Flow of a monodisperse foam in a channel (width 10.0 cm) around a circular obstacle (diameter 3.0 cm). The parameters of the flow are the following: flow rate 176 ml/min, bubble area 16.0 mm$^2$, foam thickness 3.5 mm and solution viscosity 1.06 mm$^2$/s. This movie reveals the plastic character of the flow: the foam flows around the obstacle mainly thanks to multiple bubble rearrangements.

Download Dollet and Graner supplementary movie(Video)
Video 12.8 MB