Hostname: page-component-745bb68f8f-l4dxg Total loading time: 0 Render date: 2025-01-13T13:39:05.736Z Has data issue: false hasContentIssue false

Ubiquity of particle–vortex interactions in turbulent counterflow of superfluid helium

Published online by Cambridge University Press:  25 January 2021

P. Švančara
Affiliation:
Faculty of Mathematics and Physics, Charles University, Ke Karlovu 3, 121 16Prague, Czech Republic
D. Duda
Affiliation:
Faculty of Mathematics and Physics, Charles University, Ke Karlovu 3, 121 16Prague, Czech Republic
P. Hrubcová
Affiliation:
Faculty of Mathematics and Physics, Charles University, Ke Karlovu 3, 121 16Prague, Czech Republic
M. Rotter
Affiliation:
Faculty of Mathematics and Physics, Charles University, Ke Karlovu 3, 121 16Prague, Czech Republic
L. Skrbek
Affiliation:
Faculty of Mathematics and Physics, Charles University, Ke Karlovu 3, 121 16Prague, Czech Republic
M. La Mantia*
Affiliation:
Faculty of Mathematics and Physics, Charles University, Ke Karlovu 3, 121 16Prague, Czech Republic
E. Durozoy
Affiliation:
Univ. Grenoble Alpes, CNRS, Grenoble INP, Institut Néel, 38000Grenoble, France
P. Diribarne
Affiliation:
Univ. Grenoble Alpes, CEA IRIG-DSBT, 38000Grenoble, France
B. Rousset
Affiliation:
Univ. Grenoble Alpes, CEA IRIG-DSBT, 38000Grenoble, France
M. Bourgoin
Affiliation:
Laboratoire de Physique, Université Lyon, ENS de Lyon, Université Lyon 1, CNRS, 69342Lyon, France
M. Gibert
Affiliation:
Univ. Grenoble Alpes, CNRS, Grenoble INP, Institut Néel, 38000Grenoble, France
*
Email address for correspondence: lamantia@mbox.troja.mff.cuni.cz

Abstract

Thermal counterflow of superfluid $^4$He is investigated experimentally, by employing the particle tracking velocimetry technique. A flat heater, located at the bottom of a vertical channel of square cross-section, is used to generate this unique type of thermally driven flow. Micronic solid particles, made in situ, probe this quantum flow and their time-dependent positions are collected by a digital camera, in a plane perpendicular to the heat source, away from the channel walls. The experiments are performed at relatively large heating powers, resulting in fluid velocities exceeding $10\ \textrm {mm}\,\textrm {s}^{-1}$, to ensure the existence of sufficiently dense tangles of quantized vortices. Within the investigated parameter range, we observe that the particles intermittently switch between two distinct motion regimes, along their trajectories, that is, a single particle can experience both regimes while travelling upward. The regimes can be loosely associated with fast particles, which are moving away from the heat source along almost straight tracks, and to slow particles, whose erratic upward motion can be said to be significantly influenced by quantized vortices. We propose a separation scheme to study the properties of these regimes and of the corresponding transients between them. We find that particles in both regimes display non-classical, broad distributions of velocity, which indicate the relevance of particle–vortex interactions in both cases. At the same time, we observe that the fast particles move along straighter trajectories than the slow ones, suggesting that the strength of particle–vortex interactions in the two regimes is notably different.

Type
JFM Papers
Copyright
© The Author(s), 2021. Published by Cambridge University Press

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Footnotes

Present address: Faculty of Mechanical Engineering, University of West Bohemia, Plzeň, Czech Republic.

§

Present address: Department of Physics, Royal Holloway University of London, Egham, Surrey, United Kingdom.

References

REFERENCES

Babuin, S., Stammeier, M., Varga, E., Rotter, M. & Skrbek, L. 2012 Quantum turbulence of bellows-driven $^4$He superflow: steady state. Phys. Rev. B 86, 134515.CrossRefGoogle Scholar
Baggaley, A.W. & Laizet, S. 2013 Vortex line density in counterflowing He II with laminar and turbulent normal fluid velocity profiles. Phys. Fluids 25, 115101.Google Scholar
Barenghi, C.F., Skrbek, L. & Sreenivasan, K.R. 2014 Introduction to quantum turbulence. Proc. Natl Acad. Sci. USA 111, 46474652.CrossRefGoogle ScholarPubMed
Bertolaccini, J., Lévêque, E. & Roche, P.-E. 2017 Disproportionate entrance length in superfluid flows and the puzzle of counterflow instabilities. Phys. Rev. Fluids 2, 123902.CrossRefGoogle Scholar
Bostanjoglo, O. & Kleinschmidt, R. 1967 Crystal structure of hydrogen isotopes. J. Chem. Phys. 46, 20042005.Google Scholar
Chagovets, T.V. & Van Sciver, S.W. 2011 A study of thermal counterflow using particle tracking velocimetry. Phys. Fluids 23, 107102.CrossRefGoogle Scholar
Donnelly, R.J. & Barenghi, C.F. 1998 The observed properties of liquid helium at the saturated vapor pressure. J. Phys. Chem. Ref. Data 27, 12171274.CrossRefGoogle Scholar
Dosset, P., Rassam, P., Fernandez, L., Espenel, C., Rubinstein, E., Margeat, E. & Milhiet, P.-E. 2016 Automatic detection of diffusion modes within biological membranes using back-propagation neural network. BMC Bioinform. 17, 197.CrossRefGoogle ScholarPubMed
Giuriato, U. & Krstulovic, G. 2019 Interaction between active particles and quantum vortices leading to Kelvin wave generation. Sci. Rep. 9, 4839.Google Scholar
Guo, W., La Mantia, M., Lathrop, D.P. & Van Sciver, S.W. 2014 Visualization of two-fluid flows of superfluid helium-4. Proc. Natl Acad. Sci. USA 111, 46534658.CrossRefGoogle ScholarPubMed
Hrubcová, P., Švančara, P. & La Mantia, M. 2018 Vorticity enhancement in thermal counterflow of superfluid helium. Phys. Rev. B 97, 064512.CrossRefGoogle Scholar
Idowu, O.C., Willis, A., Barenghi, C.F. & Samuels, D.C. 2000 Local normal-fluid helium II flow due to mutual friction interaction with the superfluid. Phys. Rev. B 62, 34093415.CrossRefGoogle Scholar
Kivotides, D. 2008 a Motion of a spherical solid particle in thermal counterflow turbulence. Phys. Rev. B 77, 174508.CrossRefGoogle Scholar
Kivotides, D. 2008 b Normal-fluid velocity measurement and superfluid vortex detection in thermal counterflow turbulence. Phys. Rev. B 78, 224501.CrossRefGoogle Scholar
La Mantia, M. 2016 Particle trajectories in thermal counterflow of superfluid helium in a wide channel of square cross section. Phys. Fluids 28, 024102.CrossRefGoogle Scholar
La Mantia, M. 2017 Particle dynamics in wall-bounded thermal counterflow of superfluid helium. Phys. Fluids 29, 065102.CrossRefGoogle Scholar
La Mantia, M., Duda, D., Rotter, M. & Skrbek, L. 2013 Lagrangian accelerations of particles in superfluid turbulence. J. Fluid Mech. 717, R9.CrossRefGoogle Scholar
La Mantia, M. & Skrbek, L. 2014 Quantum turbulence visualized by particle dynamics. Phys. Rev. B 90, 014519.CrossRefGoogle Scholar
La Mantia, M., Švančara, P., Duda, D. & Skrbek, L. 2016 Small-scale universality of particle dynamics in quantum turbulence. Phys. Rev. B 94, 184512.CrossRefGoogle Scholar
Lawson, J.M., Bodenschatz, E., Lalescu, C.C. & Wilczek, M. 2018 Bias in particle tracking acceleration measurement. Exp. Fluids 59, 172.CrossRefGoogle Scholar
Mastracci, B., Bao, S., Guo, W. & Vinen, W.F. 2019 Particle tracking velocimetry applied to thermal counterflow in superfluid $^4$He: motion of the normal fluid at small heat fluxes. Phys. Rev. Fluids 4, 083305.CrossRefGoogle Scholar
Mastracci, B. & Guo, W. 2018 Exploration of thermal counterflow in He II using particle tracking velocimetry. Phys. Rev. Fluids 3, 063304.CrossRefGoogle Scholar
Mongiovì, M.S., Jou, D. & Sciacca, M. 2018 Non-equilibrium thermodynamics, heat transport and thermal waves in laminar and turbulent superfluid helium. Phys. Rep. 726, 171.CrossRefGoogle Scholar
Mordant, N., Crawford, A.M. & Bodenschatz, E. 2004 Experimental Lagrangian acceleration probability density function measurement. Physica D 193, 245251.CrossRefGoogle Scholar
Paoletti, M.S., Fiorito, R.B., Sreenivasan, K.R. & Lathrop, D.P. 2008 Visualization of superfluid helium flow. J. Phys. Soc. Japan 77, 111007.CrossRefGoogle Scholar
Polanco, J.I. & Krstulovic, G. 2020 Inhomogeneous distribution of particles in coflow and counterflow quantum turbulence. Phys. Rev. Fluids 5, 032601(R).Google Scholar
Raffel, M., Willert, C.E., Scarano, F., Kähler, C.J., Wereley, S.T. & Kompenhans, J. 2018 Particle Image Velocimetry – A Pratical Guide. Springer.CrossRefGoogle Scholar
Sergeev, Y.A. & Barenghi, C.F. 2009 Particles-vortex interactions and flow visualization in $^4$He. J. Low Temp. Phys. 157, 429475.CrossRefGoogle Scholar
Sergeev, Y.A., Barenghi, C.F. & Kivotides, D. 2006 Motion of micron-size particles in turbulent helium II. Phys. Rev. B 74, 184506.CrossRefGoogle Scholar
Skrbek, L. & Sreenivasan, K.R. 2012 Developed quantum turbulence and its decay. Phys. Fluids 24, 011301.CrossRefGoogle Scholar
Švančara, P., Hrubcová, P. & La Mantia, M. 2018 a Estimation of Lagrangian velocities in thermal counterflow of superfluid helium by a multi-point algorithm. In WDS’18 Proceedings of Contributed Papers – Physics (ed. J. Pavlů & J. Šafránková), pp. 168–173. MatfyzPress.Google Scholar
Švančara, P., Hrubcová, P., Rotter, M. & La Mantia, M. 2018 b Visualization study of thermal counterflow of superfluid helium in the proximity of the heat source by using solid deuterium hydride particles. Phys. Rev. Fluids 3, 114701.CrossRefGoogle Scholar
Švančara, P. & La Mantia, M. 2017 Flows of liquid $^4$He due to oscillating grids. J. Fluid Mech. 832, 578599.CrossRefGoogle Scholar
Švančara, P. & La Mantia, M. 2019 Flight-crash events in superfluid turbulence. J. Fluid Mech. 876, R2.CrossRefGoogle Scholar
Varga, E. & Skrbek, L. 2019 Thermal counterflow of superfluid $^4$He: temperature gradient in the bulk and in the vicinity of heater. Phys. Rev. B 100, 054518.CrossRefGoogle Scholar
Voth, G.A., La Porta, A., Crawford, A.M. & Bodenschatz, E. 2002 Measurement of particle accelerations in fully developed turbulence. J. Fluid Mech. 469, 121160.CrossRefGoogle Scholar
Yui, S., Kobayashi, H., Tsubota, M. & Guo, W. 2020 Fully coupled two-fluid dynamics in superfluid $^4$He: anomalous anisotropic velocity fluctuations in counterflow. Phys. Rev. Lett. 124, 155301.CrossRefGoogle ScholarPubMed
Zhang, T. & Van Sciver, S.W. 2005 The motion of micron-sized particles in He II counterflow as observed by the PIV technique. J. Low Temp. Phys. 138, 865870.CrossRefGoogle Scholar