Hostname: page-component-745bb68f8f-g4j75 Total loading time: 0 Render date: 2025-01-13T22:55:41.710Z Has data issue: false hasContentIssue false

A unified framework for nonlinear combustion instability analysis based on the flame describing function

Published online by Cambridge University Press:  25 November 2008

N. NOIRAY
Affiliation:
Ecole Centrale Paris, EM2C Laboratory, CNRS, 92295 Châtenay-Malabry, France
D. DUROX
Affiliation:
Ecole Centrale Paris, EM2C Laboratory, CNRS, 92295 Châtenay-Malabry, France
T. SCHULLER
Affiliation:
Ecole Centrale Paris, EM2C Laboratory, CNRS, 92295 Châtenay-Malabry, France
S. CANDEL
Affiliation:
Ecole Centrale Paris, EM2C Laboratory, CNRS, 92295 Châtenay-Malabry, France

Abstract

Analysis of combustion instabilities relies in most cases on linear analysis but most observations of these processes are carried out in the nonlinear regime where the system oscillates at a limit cycle. The objective of this paper is to deal with these two manifestations of combustion instabilities in a unified framework. The flame is recognized as the main nonlinear element in the system and its response to perturbations is characterized in terms of generalized transfer functions which assume that the gain and phase depend on the amplitude level of the input. This ‘describing function’ framework implies that the fundamental frequency is predominant and that the higher harmonics generated in the nonlinear element are weak because the higher frequencies are filtered out by the other components of the system. Based on this idea, a methodology is proposed to investigate the nonlinear stability of burners by associating the flame describing function with a frequency-domain analysis of the burner acoustics. These elements yield a nonlinear dispersion relation which can be solved, yielding growth rates and eigenfrequencies, which depend on the amplitude level of perturbations impinging on the flame. This method is used to investigate the regimes of oscillation of a well-controlled experiment. The system includes a resonant upstream manifold formed by a duct having a continuously adjustable length and a combustion region comprising a large number of flames stabilized on a multipoint injection system. The growth rates and eigenfrequencies are determined for a wide range of duct lengths. For certain values of this parameter we find a positive growth rate for vanishingly small amplitude levels, indicating that the system is linearly unstable. The growth rate then changes as the amplitude is increased and eventually vanishes for a finite amplitude, indicating the existence of a limit cycle. For other values of the length, the growth rate is initially negative, becomes positive for a finite amplitude and drops to zero for a higher value. This indicates that the system is linearly stable but nonlinearly unstable. Using calculated growth rates it is possible to predict amplitudes of oscillation when the system operates on a limit cycle. Mode switching and instability triggering may also be anticipated by comparing the growth rate curves. Theoretical results are found to be in excellent agreement with measurements, indicating that the flame describing function (FDF) methodology constitutes a suitable framework for nonlinear instability analysis.

Type
Papers
Copyright
Copyright © Cambridge University Press 2008

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Abugov, D. & Obrezgov, O. 1978 Acoustic noise in turbulent flames. Combust., Explosions Shock Waves 14, 606612.CrossRefGoogle Scholar
Ananthkrishnan, N., Deo, S. & Culick, F. E. C. 2005 Reduced-order modeling and dynamics of nonlinear acoustic waves in a combustion chamber. Combust. Sci. Technol. 177, 221247.CrossRefGoogle Scholar
Armitage, C. A., Balachandran, R., Mastorakos, E. & Cant, R. S. 2006 Investigation of the nonlinear response of turbulent premixed flames to imposed inlet velocity oscillations. Combust. Flame 146, 419436.CrossRefGoogle Scholar
Balachandran, R., Ayoola, B. O., Kaminski, C. F., Dowling, A. P. & Mastorakos, E. 2005 Experimental investigation of the nonlinear response of turbulent premixed flames to imposed inlet velocity oscillations. Combust. Flame 143, 3755.CrossRefGoogle Scholar
Balasubramanian, K. & Sujith, R. I. 2008 Non-normality and nonlinearity in combustion-acoustic interaction in diffusion flames. J. Fluid Mech. 594, 2957.CrossRefGoogle Scholar
Bellows, B. D., Bobba, M. K., Forte, A., Seitzman, J. M. & Lieuwen, T. 2007 Flame transfer function saturation mechanisms in a swirl-stabilized combustor. Proc. Combust. Inst. 31, 31813188.CrossRefGoogle Scholar
Birbaud, A. L., Durox, D., Ducruix, S. & Candel, S. 2007 Dynamics of confined premixed flames submitted to upstream acoustic modulations. Proc. Combust. Inst. 31, 12571265.CrossRefGoogle Scholar
Burnley, V. S. & Culick, F. E. C. 1999 On the energy transfer between transverse acoustic modes in a cylindrical combustion chamber. Combust. Sci. Technol. 144, 119.CrossRefGoogle Scholar
Clavin, P. & Siggia, E. D. 1991 Turbulent premixed flames and sound generation. Combust. Sci. Technol. 78, 147155.CrossRefGoogle Scholar
Crocco, L. 1951 Aspects of combustion instability in liquid propellant rocket motors. J. Am. Rocket Soc. 21, 163178.CrossRefGoogle Scholar
Crocco, L., Grey, J. & T., Harrje D. 1960 Theory of liquid propellant rocket combustion instability and its experimental verification. J. Am. Rocket Soc. 30, 159168.Google Scholar
Culick, F. E. C. 1994 Some recent results for nonlinear acoustics in combustion-chambers. AIAA J. 32, 146169.CrossRefGoogle Scholar
Culick, F. E. C. 2006 Unsteady motions in combustion chambers for propulsion systems. AGARDograph, NATO/RTO-AG-AVT-039.Google Scholar
Culick, F. E. C., Burnley, V. & Swenson, G. 1995 Pulsed instabilities in solid-propellant rockets. J. Propuls. Power 11, 657665.CrossRefGoogle Scholar
Dowling, A. P. 1997 Nonlinear self-excited oscillations of ducted flame. J. Fluid Mech. 346, 271290.CrossRefGoogle Scholar
Dowling, A. P. 1999 A kinematic model of ducted flame. J. Fluid Mech. 394, 5172.CrossRefGoogle Scholar
Ducruix, S., Durox, D. & Candel, S. 2000 Theoretical and experimental determination of the transfer function of a laminar premixed flame. Proc. Combust. Inst. 28, 765773.CrossRefGoogle Scholar
Fleifil, M., Annaswamy, A., Ghoneim, Z. & Ghoniem, A. 1996 Response of a laminar premixed flame to flow oscillations: a kinematic model and thermoacoustic instability results. Combust. Flame 106, 487510.CrossRefGoogle Scholar
Howe, M. S. 1979 On the theory of unsteady high reynolds number flow through a circular aperture. Proc. R. Soc. Lond. A 366, 205223.Google Scholar
Hurle, I. R., Price, R. B., Sudgen, T. M. & Thomas, A. 1968 Sound emission from open turbulent premixed flames. Proc. R. Soc. Lond. A 303, 409427.Google Scholar
Jahnke, C. C. & Culick, F. E. C. 1994 Application of dynamical systems theory to nonlinear combustion instabilities. J. Propuls. Power 10, 508517.CrossRefGoogle Scholar
Joulin, G. & Sivashinsky, G. I. 1991 Pockets in premixed flames and combustion rate. Combust. Sci. Technol. 77, 329335.CrossRefGoogle Scholar
Kang, D. M., Culick, F. E. C. & Ratner, A. 2007 Combustion dynamics of a low-swirl combustor. Combust. Flame 151, 412425.CrossRefGoogle Scholar
Keller, J. O. & Saito, K. 1987 Measurements of the combustion flow in a pulse combustor. Combust. Sci. Technol. 53, 137163.CrossRefGoogle Scholar
Krebs, W., Bethke, S., Lepers, J., Flohr, P., Prade, B., Johnson, C. & Sattinger, S. 2005 Thermoacoustic design tools and passive control: Siemens power generation approaches. In Combustion Instabilities in Gas Turbines, Operational Experience, Fundamental Mechanisms, and Modeling (ed. Lieuwen, T. C. & Yang, V.). AIAA.Google Scholar
Lawn, C. J., Evesque, S. & Polifke, W. 2004 A model for the thermoacoustic response of a premixed swirl burner, part 1: acoustic aspects. Combust. Sci. Technol. 176, 13311358.CrossRefGoogle Scholar
Lee, J. G. & Santavicca, D. A. 2003 Experimental diagnostics for the study of combustion instabilities in lean premixed combustors. J. Propuls. Power 19, 735750.CrossRefGoogle Scholar
Lieuwen, T. 2002 Experimental investigation of limit-cycle oscillations in an unstable gas turbine combustor. J. Propuls. Power 18, 6167.CrossRefGoogle Scholar
Lieuwen, T. 2005 Nonlinear kinematic response of premixed flames to harmonic velocity disturbances. Proc. Combust. Inst. 30, 17251732.CrossRefGoogle Scholar
Lieuwen, T. & Neumeier, Y. 2002 Nonlinear pressure-heat release transfer function measurements in a premixed combustor. Proc. Combust. Inst. 29, 99105.CrossRefGoogle Scholar
Lieuwen, T. C. & Yang, V. (Ed.) 2005 Combustion Instabilities in Gas Turbines, Operational Experience, Fundamental Mechanisms, and Modeling. AIAA.Google Scholar
Martin, C. E., Benoit, L., Sommerer, Y., Nicoud, F. & Poinsot, T. 2006 Large-eddy simulation and acoustic analysis of a swirled staged turbulent combustor. AIAA J. 44, 741750.CrossRefGoogle Scholar
Matsui, Y. 1981 An experimental study on pyro-acoustic amplification of premixed laminar flames. Combust. Flame 43, 199209.CrossRefGoogle Scholar
Melling, T. H. 1973 The acoustic impedance of perforates at medium and high sound pressure levels. J. Sound Vib. 29, 165.CrossRefGoogle Scholar
Minorsky, N. 1962 Nonlinear oscillations. D. Van Nostrand.Google Scholar
Morgans, A. S. & Stow, S. R. 2007 Model-based control of combustion instabilities in annular combustors. Combust. Flame 150, 380399.CrossRefGoogle Scholar
Noiray, N., Durox, D., Schuller, T. & Candel, S. 2006 Self-induced instabilities of premixed flames in a multiple injection configuration. Combust. Flame 145, 435446.CrossRefGoogle Scholar
Noiray, N., Durox, D., Schuller, T. & Candel, S. 2007 Passive control of combustion instabilities involving premixed flames anchored on perforated plates. Proc. Combust. Inst. 31, 12831290.CrossRefGoogle Scholar
Paschereit, C. O., Schuermans, B., Polifke, W. & Mattson, O. 2002 Measurement of transfer matrices and source terms of premixed flames. Trans. ASME: J. Engng Gas Turbines Power, 124, 239247.Google Scholar
Peracchio, A. A. & Proscia, W. M. 1999 Nonlinear heat-release/acoustic model for thermoacoustic instability in lean premixed combustors. Trans. ASME: J. Engng Gas Turbines Power 121, 415421.Google Scholar
Poinsot, T. & Candel, S. 1988 A nonlinear model for ducted flame combustion instabilities. Combust. Sci. Technol. 61, 121153.CrossRefGoogle Scholar
Poinsot, T., Veynante, D., Bourienne, F., Candel, S., Esposito, E. & Surjet, J. 1988 Initiation and suppression of combustion instabilities by active control. Proc. Combust. Inst. 22, 13631370.CrossRefGoogle Scholar
Poinsot, T., Yip, B., Veynante, D., Trouve, A., Samaniengo, J. M. & Candel, S. 1992 Active control – an investigation method for combustion instabilities. J. Phys. Paris III 2, 13311357.Google Scholar
Price, R. B., Hurle, I. R. & Sudgen, T. M. 1968 Optical studies of generation of noise in turbulent flames. Proc. Combust. Inst. 12, 10931102.CrossRefGoogle Scholar
Rienstra, S. W. & Hirschberg, A. 2005 An Introduction to Acoustics. Eindhoven University of Technology: Report IWDE 92-06.Google Scholar
Roux, S., Lartigue, G., Poinsot, T. & Bérat, T. 2005 Studies of mean and unsteady flow in a swirled combustor using experiments, acoustic analysis and large eddy simulations. Combust. Flame 141, 4054.CrossRefGoogle Scholar
Sattelmayer, T. 2003 Influence of the combustor aerodynamics on combustion instabilities from equivalence ratio fluctuations. Trans. ASME. J. Engng for Gas Turbines and Power 125, 1119.CrossRefGoogle Scholar
Schuller, T., Durox, D. & Candel, S. 2002 Dynamics of and noise radiated by a perturbed impinging premixed jet flame. Combust. Flame 128, 88110.CrossRefGoogle Scholar
Schuller, T., Durox, D. & Candel, S. 2003 a Self-induced combustion oscillations of laminar premixed flames stabilized on annular burners. Combust. Flame 135, 525537.CrossRefGoogle Scholar
Schuller, T., Durox, D. & Candel, S. 2003 b A unified model for the prediction of laminar flame transfer functions : comparisons between conical and v-flame dynamics. Combust. Flame 134, 2134.CrossRefGoogle Scholar
Searby, G. & Rochwerger, D. 1991 A parametric acoustic instability in premixed flames. J. Fluid Mech. 231, 529543.CrossRefGoogle Scholar
Strahle, W. C. 1978 Combustion noise. Prog. Energy Combust. Sci. 4, 157176.CrossRefGoogle Scholar
Wicker, J. M., Greene, W. D., Kim, S. & Yang, V. 1996 Triggering of longitudinal combustion instabilities in rocket motors: Nonlinear combustion response. J. Propul. Power 12, 11481158.CrossRefGoogle Scholar
Wu, X. S., Wang, M., Moin, P. & Peters, N. 2003 Combustion instability due to the nonlinear interaction between sound and flame. J. Fluid Mech. 497, 2353.CrossRefGoogle Scholar
Yang, V., Kim, S. I. & Culick, F. E. C. 1990 Triggering of longitudinal pressure oscillations in combustion chambers. 1. nonlinear gas dynamics. Combust. Sci. Technol. 72, 183214.CrossRefGoogle Scholar
Zinn, B. T. & Lores, M. E. 1972 Application of galerkin method in solution of nonlinear axial combustion instability problems in liquid rockets. Combust. Sci. Technol. 4, 269.CrossRefGoogle Scholar