Hostname: page-component-78c5997874-ndw9j Total loading time: 0 Render date: 2024-11-10T05:01:03.360Z Has data issue: false hasContentIssue false

Vortex dynamics and sound emission in excited high-speed jets

Published online by Cambridge University Press:  29 January 2018

Michael Crawley
Affiliation:
General Atomics Aeronautical Systems Inc., Poway, CA 92122, USA
Lior Gefen
Affiliation:
Università degli studi Roma Tre, Dipartimento di Ingegneria, Via della Vasca Navale, 79, 00146 Roma, Italia
Ching-Wen Kuo
Affiliation:
Aerospace Research Center, The Ohio State University, Columbus, OH 43235, USA
Mo Samimy*
Affiliation:
Aerospace Research Center, The Ohio State University, Columbus, OH 43235, USA
Roberto Camussi
Affiliation:
Università degli studi Roma Tre, Dipartimento di Ingegneria, Via della Vasca Navale, 79, 00146 Roma, Italia
*
Email address for correspondence: Samimy.1@osu.edu

Abstract

This work aims to study the dynamics of and noise generated by large-scale structures in a Mach 0.9 turbulent jet of Reynolds number $6.2\times 10^{5}$ using plasma-based excitation of shear layer instabilities. The excitation frequency is varied to produce individual or periodic coherent ring vortices in the shear layer. First, two-point cross-correlations are used between the acoustic near field and far field in order to identify the dominant noise source region. The large-scale structure interactions are then investigated by stochastically estimating time-resolved velocity fields using time-resolved near-field pressure traces and non-time-resolved planar velocity snapshots (obtained by particle image velocimetry) by means of an artificial neural network. The estimated time-resolved velocity fields show multiple mergings of large-scale structures in the shear layer, and indicate that disintegration of coherent ring vortices is the dominant aeroacoustic source mechanism for the jet studied here. However, the merging of vortices in the initial shear layer is also identified as a non-trivial noise source mechanism.

Type
JFM Papers
Copyright
© 2018 Cambridge University Press 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Antoine, J.-P., Murenzi, R., Vandergheynst, P. & Ali, S. T. 2004 Two-Dimensional Wavelet and their Relatives. Cambridge University Press.Google Scholar
Arndt, R. E. A., Long, D. F. & Glauser, M. N. 1997 The proper orthogonal decomposition of pressure fluctuations surrounding a turbulent jet. J. Fluid Mech. 340, 133.Google Scholar
Baqui, Y. B., Agarwal, A. & Cavalieri, A.2014 A coherence-matched linear model for subsonic jet noise. In 20th AIAA/CEAS Aeroacoustics Conference, AIAA Paper 2014-2758.Google Scholar
Bogey, C. & Bailly, C. 2007 An analysis of the correlations between the turbulent flow and the sound pressure fields of subsonic jets. J. Fluid Mech. 583, 7197.CrossRefGoogle Scholar
Cabana, M., Fortuné, V. & Jordan, P. 2008 Identifying the radiating core of lighthill’s source term. Theor. Comput. Fluid Dyn. 22, 87106.Google Scholar
Camussi, R. 2002 Coherent structure identification from wavelet analysis of particle image velocimetry data. Exp. Fluids 32, 7686.CrossRefGoogle Scholar
Camussi, R. & Guj, G. 1997 Orthonormal wavelet decomposition of turbulent flows: intermittency and coherent structures. J. Fluid Mech. 348, 177199.Google Scholar
Camussi, R. & Guj, G. 1999 Experimental analysis of intermittent coherent structures in the near field of a high re turbulent jet flow. Phys. Fluids 11 (2), 423431.Google Scholar
Cavalieri, A., Jordan, P., Agarwal, A. & Gervais, Y. 2011 Jittering wave-packet models for subsonic jet noise. J. Sound Vib. 330, 44744492.CrossRefGoogle Scholar
Cavalieri, A., Jordan, P., Gervais, Y., Wei, M. & Freund, J. B. 2010 Intermittent sound generation and its control in a free-shear flow. Phys. Fluids 22, 115113.Google Scholar
Cavalieri, A., Rodriguezl, D., Jordan, P., Colonius, T. & Gervais, Y. 2013 Wavepackets in the velocity field of turbulent jets. J. Fluid Mech. 730, 559592.Google Scholar
Coiffet, F., Jordan, P., Delville, J., Gervais, Y. & Ricaud, F. 2006 Coherent structures in subsonic jets: a quasi-irrotational source mechanism? Intl J. Aeroacoust. 5 (1), 6789.Google Scholar
Crawley, M.2015 Understanding the aeroacoustic radiation sources and mechanisms in high-speed jets. PhD thesis, The Ohio State University.Google Scholar
Crawley, M., Kuo, C.-H. & Samimy, M. 2016 Identification of the acoustic response in the irrotational near-field of an excited subsonic jet. Intl J. Aeroacoust. 15, 496514.CrossRefGoogle Scholar
Crawley, M., Sinha, A. & Samimy, M. 2015 Near-field and acoustic far-field response of a high-speed jet. AIAA J. 53 (7), 18941909.Google Scholar
Crighton, D. G. & Huerre, P. 1990 Shear-layer pressure fluctuations and superdirective acoustic sources. J. Fluid Mech. 220, 355368.Google Scholar
Durgesh, V. & Naughton, J. W. 2010 Multi-time-delay LSE-POD complementary approach applied to unsteady high-Reynolds-number near wake flow. Exp. Fluids 49 (3), 571583.Google Scholar
Ewing, D. & Citriniti, J. H. 1997 Examination of a LSE/POD complementary technique using single and multi-time information in the axisymmetric shear layer. In Proceedings of the IUTAM Symposium on Simulation and Identication of Organized Structures in Flows (ed. Sorensen, J. N., Hopfinger, E. J. & Aubry, N.), pp. 375384. Kluwer Academic Press.Google Scholar
Farge, M. 1992 Wavelet transforms and their applications to turbulence. Annu. Rev. Fluid Mech. 24, 395457.CrossRefGoogle Scholar
Gaitonde, D. V. & Samimy, M. 2011 Coherent structures in plasma-actuator controlled supersonic jets: axisymmetric and mixed azimuthal modes. Phys. Fluids 23, 095104.CrossRefGoogle Scholar
Glauser, M. N. & George, W. K. 1987 Orthogonal decomposition of the axisymmetric jet mixing layer including azimuthal dependence. In Advances in Turbulence (ed. Comte-Bellot, G. & Mathieu, J.), pp. 357366. Springer.CrossRefGoogle Scholar
Goldstein, M. E. 2003 A generalized acoustic analogy. J. Fluid Mech. 488, 315333.Google Scholar
Grassucci, D., Camussi, R., Jordan, P. & Grizzi, S. 2015 Intermittency of the near pressure field induced by a compressible coaxial jet. Exp. Fluids 56 (23), 113.Google Scholar
Grizzi, S. & Camussi, R. 2012 Wavelet analysis of near-field pressure fluctuations generated by a subsonic jet. J. Fluid Mech. 698, 93124.Google Scholar
Guj, G. & Camussi, R. 1999 Statistical analysis of local turbulent energy fluctuation. J. Fluid Mech. 382, 126.Google Scholar
Guj, G., Carley, M. & Camussi, R. 2003 Acoustic identification of coherent structures in a turbulent jet. J. Sound Vib. 259 (5), 10371065.CrossRefGoogle Scholar
Hahn, C.2011 Design and validation of the new jet facility and anechoic chamber. Masters thesis, The Ohio State University.Google Scholar
Hahn, C., Kearney-Fischer, M. & Samimy, M. 2011 On factors influencing arc filament plasma actuator performance in control of high speed jets. Exp. Fluids 51 (6), 15911603.Google Scholar
Hall, J. W., Pinier, J., Hall, A. & Glauser, M. N. 2006 Two-point correlations of the near and far-field pressure in a transonic jet. In ASME Joint U.S. European Fluids Engineering Summer Meeting, Miami, Florida.Google Scholar
Haykin, S. 1994 Neural Networks A Comprehensive Foundation. Macmillan College Publishing Company.Google Scholar
Hileman, J., Thurow, B., Caraballo, E. J. & Samimy, M. 2005 Large-scale structure evolution and sound emission in high-speed jets: real-time visualization with simultaneous acoustic measurements. J. Fluid Mech. 544, 277307.Google Scholar
Howe, M. S. 1975 Contributions to the theory of aerodynamic sound, with application to excess jet noise and the theory of the flute. J. Fluid Mech. 71 (4), 625673.Google Scholar
Jordan, P. & Gervais, Y. 2008 Subsonic jet aeroacoustics: associating experiment, modelling and simulations. Exp. Fluids 44, 121.Google Scholar
Jordan, P., Schlegel, M., Stalnov, O., Noack, B. R. & Tinney, C. E. 2007 Identifying noisy and quiet modes in a jet. 13th AIAA/CEAS Aeroacoustics Conference (28th AIAA Aeroacoustics Conference), AIAA Paper 2007-3602.Google Scholar
Juvé, D., Sunyach, M. & Comte-Bellot, G. 1979 Filtered azimuthal correlations in the acoustic far field of a subsonic jet. AIAA J. 17 (1), 112113.Google Scholar
Juvé, D., Sunyach, M. & Comte-Bellot, G. 1980 Intermittency of the noise emission in subsonic cold jets. J. Sound Vib. 71 (3), 319332.Google Scholar
Kearney-Fischer, M., Kim, J.-H. & Samimy, M. 2009 Control of a high Reynolds number mach 0.9 heated jet using plasma actuators. Phys. Fluids 21, 095101.Google Scholar
Kearney-Fischer, M., Sinha, A. & Samimy, M. 2013 Intermittent nature of subsonic jet noise. AIAA J. 51 (5), 11421155.Google Scholar
Kibens, V. 1980 Discrete noise spectrum generated by an acoustically excited jet. AIAA J. 18 (4), 434441.CrossRefGoogle Scholar
Kikuchi, K. & Wang, B. 2010 Spatiotemporal wavelet transform and the multiscale behavior of the Madden–Julian oscillation. J. Clim. 23, 38143834.Google Scholar
Kœnig, M., Cavalieri, A., Jordan, P., Delville, J., Gervais, Y. & Papamoschou, D. 2013 Farfield filtering and source imaging of subsonic jet noise. J. Sound Vib. 332 (18), 40674088.Google Scholar
Lasagna, D., Fronges, L., Orazi, M. & Iuso, G. 2015 Nonlinear multi-time-delay stochastic estimation: application to cavity flow and turbulent channel flow. AIAA J. 53 (10), 29202935.Google Scholar
Lighthill, M. J. 1952 On sound generated aerodynamically. I. general theory. Proc. R. Soc. Lond. A 211, 564587.Google Scholar
Lilley, G. M.1974 On the noise from jets. AGARD-CP-131, pp. 13.1–13.12.Google Scholar
Michalke, A. 1965 On spatially growing disturbances in an inviscid shear layer. J. Fluid Mech. 23 (3), 521544.Google Scholar
Michalke, A. 1972 An expansion scheme for the noise from circular jets. Z. Flugwiss. 20, 229237.Google Scholar
Noack, B. R., Afanasiev, K., Morzynski, M., Tadmor, G. & Thiele, F. 2008 A hierarchy of low-dimensional models for the transient and post-transient cylinder wake. J. Fluids 497, 103148.Google Scholar
Obrist, D. 2011 Acoustic emissions from convected wave packets. Phys. Fluids 23, 026101.Google Scholar
Phillips, O. M. 1960 On the generation of sound by supersonic turbulent shear layers. J. Fluid Mech. 9 (1), 128.Google Scholar
Powell, A. 1964 Theory of vortex sound. J. Acoust. Soc. Am. 36 (1), 177195.Google Scholar
Ribner, H. S.1962 Aerodynamic sound from fluid dilatations. UTIA Report 86. Institute of Aerophysics, University of Toronto.Google Scholar
Schmid, P. 2010 Dynamic mode decomposition of numerical and experimental data. J. Fluid Mech. 656, 528.Google Scholar
Sinha, A.2011 Development of reduced-order models and strategies for feedback control of high-speed axisymmetric jets. PhD thesis, The Ohio State University, Columbus, OH.CrossRefGoogle Scholar
Sinha, A., Alkandry, H., Kearney-Fischer, M., Samimy, M. & Colonius, T. 2012 The impulse response of a high-speed jet forced with localized arc filament plasma actuators. Phys. Fluids 24, 125104.CrossRefGoogle Scholar
Sinha, A., Serrani, A. & Samimy, M. 2010 Initial development of reduced-order models for feedback control of axisymmetric jets. Intl J. Flow Control 2 (1), 3960.Google Scholar
Sirovich, L. 1987 Turbulence and the dynamics of coherent structures, parts I-III. Q. Appl. Maths XLV (3), 561590.CrossRefGoogle Scholar
Speth, R. L.2015 Controlling the development of coherent structures of high speed jets and the resultant near field. PhD thesis, Ohio State University, Columbus, Ohio, USA.Google Scholar
Tam, C. K. W. 1995 Supersonic jet noise. Annu. Rev. Fluid Mech. 27, 1743.Google Scholar
Tam, C. K. W., Golebiowski, M. & Seiner, J. M. 1996 On the two components of turbulent mixing noise from supersonic jets. In 2nd AIAA/CEAS Aeroacoustics Conference.Google Scholar
Taylor, J. A. & Glauser, M. N. 2004 Towards practical flow sensing and control via pod and lse based low-dimensional tools. J. Fluids Engng 126 (3), 337345.Google Scholar
Tinney, C. E., Coiffet, F., Delville, J., Hall, A. M., Jordan, P. & Glauser, M. N. 2006 On spectral linear stochastic estimation. Exp. Fluids 41, 763775.Google Scholar
Tinney, C. E., Eukeiley, L. S. & Glauser, M. N. 2008 Low-dimensional characteristics of a transonic jet. Part 2. estimate and far-field prediction. J. Fluid Mech. 615, 5392.Google Scholar
Tinney, C. E. & Jordan, P. 2008 The near pressure field of co-axial subsonic jets. J. Fluid Mech. 611, 175204.CrossRefGoogle Scholar
Torrence, C. & Compo, G. P. 1998 A practical guide to wavelet analysis. Bull. Am. Meteorol. Soc. 79 (1), 6178.Google Scholar
Utkin, Y., Keshav, S., Kim, J.-H., Kastner, J., Adamovich, I. & Samimy, M. 2007 Development and use of localized arc filament plasma actuators for high-speed flow control. J. Phys. D: Appl. Phys. 40 (3), 685694.Google Scholar
Wei, M. & Freund, J. B. 2006 A noise-controlled free shear flow. J. Fluid Mech. 546, 123152.Google Scholar