Hostname: page-component-745bb68f8f-kw2vx Total loading time: 0 Render date: 2025-01-13T23:22:04.984Z Has data issue: false hasContentIssue false

Vortex growth in jets

Published online by Cambridge University Press:  29 March 2006

Gordon S. Beavers
Affiliation:
Department of Aerospace Engineering and Mechanics, University of Minnesota
Theodore A. Wilson
Affiliation:
Department of Aerospace Engineering and Mechanics, University of Minnesota

Abstract

Observations are reported on the growth of vortices in the vortex sheets bounding the jet emerging from a sharp-edged two-dimensional slit and from a sharp-edged circular orifice. A regular periodic flow is observed near the orifice for both configurations when the Reynolds number of the jet lies between about 500 and 3000. The two-dimensional jet produces a symmetric pattern of vortex pairs with a Strouhal number of 0·43. Vortex rings are formed in the circular jet with a Strouhal number of 0·63. Computer experiments show that a growing pair of vortices in two parallel vortex sheets produces a symmetric pattern of vortices upstream from the original disturbance.

Type
Research Article
Copyright
© 1970 Cambridge University Press

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Abernathy, F. H. & Kronauer, R. E. 1962 The formation of vortex streets. J. Fluid Mech. 13, 120.Google Scholar
Anderson, A. B. C. 1954 A jet-tone orifice number for orifices of small thickness-diameter ratio. J. acoust. Soc. Am. 26, 2125.Google Scholar
Anderson, A. B. C. 1955a Metastable jet-tone states of jets from sharp-edged, circular, pipe-like orifices. J. acoust. Soc. Am. 27, 1321.Google Scholar
Anderson, A. B. C. 1955b Structure and velocity of the periodic vortex-ring flow pattern of a Primary Pfeifenton (pipe tone) jet. J. acoust. Soc. Am. 27, 10481053.Google Scholar
Anderson, A. B. C. 1956 Vortex-ring structure-transition in a jet emitting discrete acoustic frequencies. J. acoust. Soc. Am. 28, 914921.Google Scholar
Andrade, E. N. Da C. 1941 The sensitive flame. Proc. Phys. Soc. 53, 329355.Google Scholar
Becker, H. A. & Massaro, T. A. 1968 Vortex evolution in a round jet. J. Fluid Mech. 31, 435448.Google Scholar
Birkhoff, G. & Fisher, J. 1959 Do vortex sheets roll up? Rc. Circ. mat. Palermo (2), 8, 7790.Google Scholar
Brown, G. B. 1935 On vortex motion in gaseous jets and the origin of their sensitivity to sound. Proc. Phys. Soc. 47, 703732.Google Scholar
Chanaud, R. C. & Powell, A. 1965 Some experiments concerning the hole and ring tone. J. acoust. Soc. Am. 37, 902911.Google Scholar
Freymuth, P. 1966 On transition in a separated laminar boundary layer. J. Fluid Mech. 25, 683704.Google Scholar
Gerrard, J. H. 1967 Numerical computation of the magnitude and frequency of the lift on a circular cylinder. Phil. Trans. Roy. Soc. A 261, 137162.Google Scholar
Hama, F. R. & Burke, E. R. 1960 On the rolling-up of a cortex sheet. University of Maryland, Tech. Note BN-220.Google Scholar
Johansen, F. C. 1929 Flow through pipe orifices at low Reynolds numbers. Proc. Roy. Soc. A 126, 231245.Google Scholar
Michalke, A. 1964a Zur Instabilität und nichtlinearen Entwicklung einer gestörten Scherschicht. Ing. Arch. 33, 264276.Google Scholar
Michalke, A. 1964b On the inviscid instability of the hyperbolic-tangent velocity profile. J. Fluid Mech. 19, 543556.Google Scholar
Michalke, A. 1965 On spatially growing disturbances in an inviscid shear layer. J. Fluid Mech. 23, 521544.Google Scholar
Michalke, A. & Freymuth, P. 1966 The instability and the formation of vortices in a free boundary layer. AGARD Conf. Proc. 4, 575595.Google Scholar
Michalke, A. & Timme, A. 1967 On the inviscid instability of certain two-dimensional vortex-type flows. J. Fluid Mech. 29, 647666.Google Scholar
Michalke, A. & Wehrmann, O. 1962 Akustische Beeinflussung von Freistrahlgrenzschichten. Proc. Int. Coun. of Aero. Sci., 3rd Congress, Stockholm, pp. 773785.Google Scholar
Michalke, A. & Wille, R. 1964 Strömungsvorgänge im laminar-turbulenten Übergangsbereich von Freistrahlgrenzschichten. Proc. 11th Int. Congr. Appl. Mech., Munich, pp. 962972.Google Scholar
Rosenhead, L. 1931 The formation of vortices from a surface of discontinuity. Proc. Roy. Soc. A 134, 170192.Google Scholar
Sato, H. 1960 The stability and transition of a two-dimensional jet. J. Fluid Mech. 7, 5380.Google Scholar
Schade, H. & Michalke, A. 1962 Zur Entstehung von Wirbeln in einer freien Grenzschicht. Z. Flugwiss. 10, 147154.Google Scholar
Von Gierke, H. 1950 Über Schneidentöne an kreisrunden Gasstrahlen und ebenen Lamellen. Z. angew. Phys. 3, 97106.Google Scholar
Wehrmann, O. & Wille, R. 1958 Beitrag zur Phänomenologie des laminar-turbulenten Übergangs im Freistrahl bei kleinen Reynoldszahlen. Boundary Layer Research (ed. H. Görtler), pp. 387403.
Westwater, F. L. 1936 The rolling up of a surface of discontinuity. Aero. Res. Coun., R. & M. 1692, pp. 116131.Google Scholar
Wille, R. 1963 Beitrage zur Phänomenologie der Freistrahlen. Z. Flugwiss. 11, 222233.Google Scholar