Hostname: page-component-7b9c58cd5d-bslzr Total loading time: 0.001 Render date: 2025-03-13T14:02:35.331Z Has data issue: false hasContentIssue false

Wavelet analysis of the coupling between turbulence, particles and electrostatics in dust storms

Published online by Cambridge University Press:  13 March 2025

Huan Zhang
Affiliation:
Center for Particle-laden Turbulence, Lanzhou University, Lanzhou 730000, PR China
Xiaojing Zheng*
Affiliation:
Research Center for Applied Mechanics, Xidian University, Xi’an 710071, PR China
*
Corresponding author: Xiaojing Zheng, xjzheng@lzu.edu.cn

Abstract

Dust storms are a unique form of high-Reynolds-number particle-laden turbulence associated with intense electrical activity. Using a wavelet-based analysis method on field measurement data, Zhang et al. (2023 J. Fluid Mech. 963, A15) found that wind velocity intermittency intensifies during dust storms, but it is weaker than both dust concentration and electric field. However, the linear and nonlinear multifield coupling characteristics, which significantly influence particle transport and turbulence modulation, remain poorly understood. To address this issue, we obtained high-fidelity datasets of wind velocity, dust concentration, and electric field at the Qingtu Lake Observation Array. By extending the wavelet-based data analysis method, we investigated localised linear and quadratic nonlinear coupling characteristics in strong turbulence–particle–electrostatics coupling regimes. Our findings reveal that linear coupling behaviour is largely dominated by the multifield intermittent components. At small scales, due to very high intermittency, no strong phase synchronisation can be formed, and the interphase linear coupling is weak and notably intermittent. At larger scales, however, perfect phase synchronisation emerges, and dust concentration and electric field exhibit strong, non-intermittent linear coupling, suggesting that large-scale coherent structures play a dominant role in driving the coupling. Importantly, the multifield spectra show well-developed $-1$ and $-5/3$ power-law regions, but the spectral breakpoints for dust concentration and electric field are two decades lower than that for streamwise wind velocity. This difference is due to the broader range and stronger intensity of quadratic nonlinear coupling in dust concentration and electric field, which leads to the broadening of Kolmogorov’s $-5/3$ power-law spectrum.

Type
JFM Papers
Copyright
© The Author(s), 2025. Published by Cambridge University Press

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Alexandrova, O., Carbone, V., Veltri, P. & Sorriso-Valvo, L. 2008 Small-scale energy cascade of the solar wind turbulence. Astrophys. J. 674 (2), 11531157.CrossRefGoogle Scholar
Agnon, Y. & Sheremet, A. 1997 Stochastic nonlinear shoaling of directional spectra. J. Fluid Mech. 345, 7999.CrossRefGoogle Scholar
Arndt, A., Corke, T., Matlis, E. & Semper, M. 2020 Controlled stationary/travelling cross-flow mode interaction in a Mach 6.0 boundary layer. J. Fluid Mech. 887, A30.CrossRefGoogle Scholar
Balachandar, S. & Eaton, J.K. 2010 Turbulent dispersed multiphase flow. Annu. Rev. Fluid Mech. 42 (1), 111133.CrossRefGoogle Scholar
Belušiá, D. & Mahrt, L. 2020 Is geometry more universal than physics in atmospheric boundary layer flow? J. Geophys. Res.-Atmos. 117, D09115.Google Scholar
Bendat, J.S. & Piersol, A.G. 2011 Random Data: Analysis and Measurement Procedures. John Wiley & Sons.Google Scholar
Bernardini, M., Della Posta, G., Salvadore, F. & Martelli, E. 2023 Unsteadiness characterisation of shock wave/turbulent boundary-layer interaction at moderate Reynolds number. J. Fluid Mech. 954, A43.CrossRefGoogle Scholar
Biferale, L., Musacchio, S. & Toschi, F. 2012 Inverse energy cascade in three-dimensional isotropic turbulence. Phys. Rev. Lett. 108 (16), 164501.CrossRefGoogle ScholarPubMed
Boccaletti, S., Kurths, J., Osipov, G., Valladares, D.L. & Zhou, C.S. 2002 The synchronization of chaotic systems. Phys. Rep. 366 (1–2), 1101.CrossRefGoogle Scholar
Bountin, D., Shiplyuk, A. & Maslov, A. 2008 Evolution of nonlinear processes in a hypersonic boundary layer on a sharp cone. J. Fluid Mech. 611, 427442.CrossRefGoogle Scholar
Boutsikakis, A., Fede, P. & Simonin, O. 2022 Effect of electrostatic forces on the dispersion of like-charged solid particles transported by homogeneous isotropic turbulence. J. Fluid Mech. 938, A33.CrossRefGoogle Scholar
Brandt, L. & Coletti, F. 2022 Particle-laden turbulence: progress and perspectives. Annu. Rev. Fluid Mech. 54 (1), 159189.CrossRefGoogle Scholar
Buaria, D., Clay, M.P., Sreenivasan, K.R. & Yeung, P.K. 2021 Small-scale isotropy and ramp-cliff structures in scalar turbulence. Phys. Rev. Lett. 126 (3), 034504.CrossRefGoogle ScholarPubMed
Camussi, R. 2002 Coherent structure identification from wavelet analysis of particle image velocimetry data. Exp. Fluids 32 (1), 7686.CrossRefGoogle Scholar
Camussi, R. & Di Felice, F. 2006 Statistical properties of vortical structures with spanwise vorticity in zero pressure gradient turbulent boundary layers. Phys. Fluids 18 (3), 035108.CrossRefGoogle Scholar
Camussi, R., Grilliat, J., Caputi-Gennaro, G. & Jacob, M.C. 2010 Experimental study of a tip leakage flow: wavelet analysis of pressure fluctuations. J. Fluid Mech. 660, 87113.CrossRefGoogle Scholar
Camussi, R. & Guj, G. 1997 Orthonormal wavelet decomposition of turbulent flows: intermittency and coherent structures. J. Fluid Mech. 348, 177199.CrossRefGoogle Scholar
Camussi, R., Robert, G. & Jacob, M.C. 2008 Cross-wavelet analysis of wall pressure fluctuations beneath incompressible turbulent boundary layers. J. Fluid Mech. 617, 1130.CrossRefGoogle Scholar
Chen, S. & Cao, N. 1997 Anomalous scaling and structure instability in three-dimensional passive scalar turbulence. Phys. Rev. Lett. 78 (18), 34593462.CrossRefGoogle Scholar
Chowdhuri, S., Iacobello, G. & Banerjee, T. 2021 Visibility network analysis of large-scale intermittency in convective surface layer turbulence. J. Fluid Mech. 925, A38.CrossRefGoogle Scholar
Chowdhuri, S., Kumar, S. & Banerjee, T. 2020 Revisiting the role of intermittent heat transport towards Reynolds stress anisotropy in convective turbulence. J. Fluid Mech. 899, A26.CrossRefGoogle Scholar
Corke, T., Arndt, A., Matlis, E. & Semper, M. 2018 Control of stationary cross-flow modes in a Mach 6 boundary layer using patterned roughness. J. Fluid Mech. 856, 822849.CrossRefGoogle Scholar
Corke, T.C., Shakib, F. & Nagib, H.M. 1991 Mode selection and resonant phase locking in unstable axisymmetric jets. J. Fluid Mech. 223 (1), 253311.CrossRefGoogle Scholar
Craig, S.A., Humble, R.A., Hofferth, J.W. & Saric, W.S. 2019 Nonlinear behaviour of the Mack mode in a hypersonic boundary layer. J. Fluid Mech. 872, 7499.CrossRefGoogle Scholar
Crawley, M., Gefen, L., Kuo, C.W., Samimy, M. & Camussi, R. 2018 Vortex dynamics and sound emission in excited high-speed jets. J. Fluid Mech. 839, 313347.CrossRefGoogle Scholar
Cui, G. & Jacobi, I. 2021 Biphase as a diagnostic for scale interactions in wall-bounded turbulence. Phys. Rev. Fluids 6 (1), 014604.CrossRefGoogle Scholar
Cui, Y., Zhang, H. & Zheng, X. 2024 Turbulence modulation by charged inertial particles in channel flow. J. Fluid Mech. 990, A2.CrossRefGoogle Scholar
Daubechies, I. 1992 Ten Lectures On Wavelets. Society for Industrial and Applied Mathematics.CrossRefGoogle Scholar
Di Renzo, M. & Urzay, J. 2018 Aerodynamic generation of electric fields in turbulence laden with charged inertial particles. Nat. Commun. 9 (1), 1676.CrossRefGoogle ScholarPubMed
Dudok de Wit, T. & Krasnosel’Skikh, V.V. 1995 Wavelet bicoherence analysis of strong plasma turbulence at the earth’s quasiparallel bow shock. Phys. Plasmas 2 (11), 43074311.CrossRefGoogle Scholar
Eaton, J.K. & Fessler, J. 1994 Preferential concentration of particles by turbulence. Intl J. Multiphase Flow 20, 169209.CrossRefGoogle Scholar
Elgar, S. & Guza, R.T. 1985 Observations of bispectra of shoaling surface gravity waves. J. Fluid Mech. 161, 425448.CrossRefGoogle Scholar
Elghobashi, S. 1994 On predicting particle-laden turbulent flows. Appl. Sci. Res. 52 (4), 309329.CrossRefGoogle Scholar
Farge, M. 1992 Wavelet transforms and their applications to turbulence. Annu. Rev. Fluid Mech. 24 (1), 395458.CrossRefGoogle Scholar
Farge, M., Pellegrino, G. & Schneider, K. 2001 Coherent vortex extraction in 3D turbulent flows using orthogonal wavelets. Phys. Rev. Lett. 87 (5), 054501.CrossRefGoogle ScholarPubMed
Foken, T. & Wichura, B. 1996 Tools for quality assessment of surface-based flux measurements. Agric. Forest Meteorol. 78 (1-2), 83105.CrossRefGoogle Scholar
Frisch, U. 1995 Turbulence: The Legacy of A N. Kolmogorov. Cambridge University Press.CrossRefGoogle Scholar
Grassucci, D., Camussi, R., Jordan, P. & Grizzi, S. 2015 Intermittency of the near pressure field induced by a compressible coaxial jet. Exp. Fluids 56 (2), 23.CrossRefGoogle Scholar
Grinsted, A., Moore, J.C. & Jevrejeva, S. 2004 Application of the cross wavelet transform and wavelet coherence to geophysical time series. Nonlinear Process. Geophys. 11 (5/6), 561566.CrossRefGoogle Scholar
Grosshans, H., Bissinger, C., Calero, M. & Papalexandris, M.V. 2021 The effect of electrostatic charges on particle-laden duct flows. J. Fluid Mech. 909, A21.CrossRefGoogle Scholar
Grosshans, H. & Papalexandris, M.V. 2017 Direct numerical simulation of triboelectric charging in particle-laden turbulent channel flows. J. Fluid Mech. 818, 465491.CrossRefGoogle Scholar
Guj, G. & Camussi, R. 1999 Statistical analysis of local turbulent energy fluctuations. J. Fluid Mech. 382, 126.CrossRefGoogle Scholar
Hasselmann, K., Munk, W. & MacDonald, G. 1963 Bispectra of ocean waves. In Proceedings of the Symposium on Time Series Analysis (ed. M. Rosenblatt), vol. 1, pp. 125139. John Wiley Google Scholar
Horwitz, J.A.K. & Mani, A. 2020 Two-way coupled particle–turbulence interaction: effect of numerics and resolution on fluid and particle statistics. Phys. Rev. Fluids 5 (10), 104302.CrossRefGoogle Scholar
Hudgins, L., Friehe, C.A. & Mayer, M.E. 1993 Wavelet transforms and atmospheric turbulence. Phys. Rev. Lett. 71 (20), 32793282.CrossRefGoogle Scholar
Hutchins, N., Chauhan, K., Marusic, I., Monty, J. & Klewicki, J. 2012 Towards reconciling the large-scale structure of turbulent boundary layers in the atmosphere and laboratory. Boundary-Layer Meteorol. 145 (2), 273306.CrossRefGoogle Scholar
Hutchins, N. & Marusic, I. 2007 Evidence of very long meandering features in the logarithmic region of turbulent boundary layers. J. Fluid Mech. 579, 128.CrossRefGoogle Scholar
Hwang, Y., Hutchins, N. & Marusic, I. 2022 The logarithmic variance of streamwise velocity and k −1 conundrum in wall turbulence. J. Fluid Mech. 933, A8.CrossRefGoogle Scholar
Jantač, S. & Grosshans, H. 2024 Suppression and control of bipolar powder charging by turbulence. Phys. Rev. Lett. 132 (5), 054004.CrossRefGoogle ScholarPubMed
Kanagy, S.P. II & Mann, C.J. 1994 Electrical properties of eolian sand and silt. Earth-Sci. Rev. 36 (3–4), 181204.CrossRefGoogle Scholar
Karnik, A.U. & Shrimpton, J.S. 2012 Mitigation of preferential concentration of small inertial particles in stationary isotropic turbulence using electrical and gravitational body forces. Phys. Fluids 24 (7), 073301.CrossRefGoogle Scholar
Kim, B.H. & Williams, D.R. 2006 Nonlinear coupling of fluctuating drag and lift on cylinders undergoing forced oscillations. J. Fluid Mech. 559, 335353.CrossRefGoogle Scholar
Klewicki, J.C., Priyadarshana, P.J.A. & Metzger, M.M. 2008 Statistical structure of the fluctuating wall pressure and its in-plane gradients at high Reynolds number. J. Fluid Mech. 609, 195220.CrossRefGoogle Scholar
Kolmogorov, A.N. 1941 The local structure of turbulence in incompressible viscous fluid for very large Reynolds number. Dokl. Akad. Nauk SSSR 30, 299303.Google Scholar
Kulick, J.D., Fessler, J.R. & Eaton, J.K. 1994 Particle response and turbulence modification in fully developed channel flow. J. Fluid Mech. 277, 109134.CrossRefGoogle Scholar
Kunkel, G.J. & Marusic, I. 2006 Study of the near-wall-turbulent region of the high-Reynolds-number boundary layer using an atmospheric flow. J. Fluid Mech. 548, 375402.CrossRefGoogle Scholar
Lancaster, G., Iatsenko, D., Pidde, A., Ticcinelli, V. & Stefanovska, A. 2018 Surrogate data for hypothesis testing of physical systems. Phys. Rep. 748, 160.CrossRefGoogle Scholar
Lu, J., Nordsiek, H., Saw, E.W. & Shaw, R.A. 2010 Clustering of charged inertial particles in turbulence. Phys. Rev. Lett. 104 (18), 184505.CrossRefGoogle ScholarPubMed
Lu, J. & Shaw, R.A. 2015 Charged particle dynamics in turbulence: theory and direct numerical simulations. Phys. Fluids 27 (6), 065111.CrossRefGoogle Scholar
Marusic, I., McKeon, B.J., Monkewitz, P.A., Nagib, H.M., Smits, A.J. & Sreenivasan, K.R. 2010 Wall-bounded turbulent flows at high Reynolds numbers: recent advances and key issues. Phys. Fluids 22 (6), 065103.CrossRefGoogle Scholar
Marusic, I. & Monty, J.P. 2019 Attached eddy model of wall turbulence. Annu. Rev. Fluid Mech. 51 (1), 4974.CrossRefGoogle Scholar
Maxey, M.R. 1987 The gravitational settling of aerosol particles in homogeneous turbulence and random flow fields. J. Fluid Mech. 174, 441465.CrossRefGoogle Scholar
McComas, C.H. & Briscoe, M.G. 1980 Bispectra of internal waves. J. Fluid Mech. 97 (1), 205213.CrossRefGoogle Scholar
McGowan, H.A. & Clark, A. 2008 A vertical profile of PM10 dust concentrations measured during a regional dust event identified by MODIS Terra, western Queensland, Australia. J. Geophys. Res.-Earth Surf. 113 (F2), F02S03.CrossRefGoogle Scholar
Meneveau, C. 1991 Analysis of turbulence in the orthonormal wavelet representation. J. Fluid Mech. 232 (1), 469520.CrossRefGoogle Scholar
Middlebrooks, J.B., Corke, T.C., Matlis, E. & Semper, M. 2024 Cross-flow instability on a swept-fin cone at Mach 6: characteristics and control. J. Fluid Mech. 981, A18.CrossRefGoogle Scholar
Mihanović, H., Orlić, M. & Pasarić, Z. 2009 Diurnal thermocline oscillations driven by tidal flow around an island in the Middle Adriatic. J. Mar. Syst. 78, S157S168.CrossRefGoogle Scholar
Monsalve, E., Brunet, M., Gallet, B. & Cortet, P.P. 2020 Quantitative experimental observation of weak inertial-wave turbulence. Phys. Rev. Lett. 125 (25), 254502.CrossRefGoogle ScholarPubMed
Narayanan, S. & Hussain, F. 1996 Measurements of spatiotemporal dynamics in a forced plane mixing layer. J. Fluid Mech. 320, 71115.CrossRefGoogle Scholar
Nickels, T.B., Marusic, I., Hafez, S. & Chong, M.S. 2005 Evidence of the k 1 −1 law in a high-Reynolds-number turbulent boundary layer. Phys. Rev. Lett. 95, 074501.CrossRefGoogle Scholar
Paquin, L.A., Hameed, A., Parziale, N.J. & Laurence, S.J. 2024 Time-resolved wave packet development in highly cooled hypersonic boundary layers. J. Fluid Mech. 983, A36.CrossRefGoogle Scholar
Paterna, E., Crivelli, P. & Lehning, M. 2016 Decoupling of mass flux and turbulent wind fluctuations in drifting snow. Geophys. Res. Lett. 43 (9), 44414447.CrossRefGoogle Scholar
Percival, D.P. 1995 On estimation of the wavelet variance. Biometrika 82 (3), 619631.CrossRefGoogle Scholar
Perry, A.E., Henbest, S. & Chong 1986 A theoretical and experimental study of wall turbulence. J. Fluid Mech. 165 (1), 163199.CrossRefGoogle Scholar
Pope, S.B. 2000 Turbulent Flows. Cambridge University Press.Google Scholar
Rahman, M.M., Cheng, W. & Samtaney, R. 2021 Generation and sustenance of electric fields in sandstorms. Phys. Rev. Res. 3 (1), L012008.CrossRefGoogle Scholar
Ritz, C.P. & Powers, E.J. 1986 Estimation of nonlinear transfer functions for fully developed turbulence. Physica D 20, 320334.CrossRefGoogle Scholar
Ruan, X., Gorman, M.T. & Ni, R. 2024 Effects of electrostatic interaction on clustering and collision of bidispersed inertial particles in homogeneous and isotropic turbulence. J. Fluid Mech. 980, A29.CrossRefGoogle Scholar
Rudge, W.A.D. 1913 Atmospheric electrification during South African dust storms. Nature 91 (2263), 3132.CrossRefGoogle Scholar
Ruppert-Felsot, J., Farge, M. & Petitjeans, P. 2009 Wavelet tools to study intermittency: application to vortex bursting. J. Fluid Mech. 636, 427453.CrossRefGoogle Scholar
Salem, C., Mangeney, A., Bale, S.D. & Veltri, P. 2009 Solar wind magnetohydrodynamics turbulence: anomalous scaling and role of intermittency. Astrophys. J. 702 (1), 537553.CrossRefGoogle Scholar
Schmidt, D.S., Schmidt, R.A. & Dent, J.D. 1998 Electrostatic force on saltating sand. J. Geophys. Res. 103 (D8), 89979001.CrossRefGoogle Scholar
Schulte, J.A. 2016 Wavelet analysis for non-stationary, nonlinear time series. Nonlinear Process. Geophys. 23 (4), 257267.CrossRefGoogle Scholar
Shao, Y. 2008 Physics and Modelling of Wind Erosion. Springer.Google Scholar
Shinbrot, T. & Herrmann, H.J. 2008 Granular matter: static in motion. Nature 451 (7180), 773774.CrossRefGoogle ScholarPubMed
Stow, C.D. 1969 Dust and sand storm electrification. Weather 24 (4), 134144.CrossRefGoogle Scholar
Sutherland, W. 1893 LII. The viscosity of gases and molecular force. London Edinburgh Dublin Philos. Mag. J. Sci. 36 (223), 507531.CrossRefGoogle Scholar
Torrence, C. & Compo, G.P. 1998 A practical guide to wavelet analysis. Bull. Am. Meteorol. Soc. 79 (1), 6178.2.0.CO;2>CrossRefGoogle Scholar
Unnikrishnan, S. & Gaitonde, D.V. 2020 Linear, nonlinear and transitional regimes of second-mode instability. J. Fluid Mech. 905, A25.CrossRefGoogle Scholar
Van Milligen, B.P., Hidalgo, C. & Sanchez, E. 1995 Nonlinear phenomena and intermittency in plasma turbulence. Phys. Rev. Lett. 74 (3), 395398.CrossRefGoogle Scholar
Van Milligen, B.P., Sanchez, E., Estrada, T., Hidalgo, C., Brañas, B., Carreras, B. & García, L. 1995 Wavelet bicoherence: a new turbulence analysis tool. Phys. Plasmas 2 (8), 30173032.CrossRefGoogle Scholar
Wang, G. & Zheng, X. 2016 Very large scale motions in the atmospheric surface layer: a field investigation. J. Fluid Mech. 802, 464489.CrossRefGoogle Scholar
Wang, G., Zheng, X. & Tao, J. 2017 Very large scale motions and PM10 concentration in a high-re boundary layer. Phys. Fluids 29 (6), 061701.CrossRefGoogle Scholar
Warhaft, Z. 2000 Passive scalars in turbulent flows. Annu. Rev. Fluid Mech. 32 (1), 203240.CrossRefGoogle Scholar
Watanabe, T. & Gotoh, T. 2004 Statistics of a passive scalar in homogeneous turbulence. New J. Phys. 6, 4040.CrossRefGoogle Scholar
Williams, E., Nathou, N., Hicks, E., Pontikis, C., Russell, B., Miller, M. & Bartholomew, M.J. 2009 The electrification of dust-lofting gust fronts (‘haboobs’) in the Sahel. Atmos. Res. 91 (2–4), 292298.CrossRefGoogle Scholar
Xiang, N.B. & Qu, Z.N. 2018 Evolutionary characteristics of the interplanetary magnetic field intensity. Astron. J. 156 (4), 152.CrossRefGoogle Scholar
Xu, G.S., Wan, B.N., Song, M. & Li, J. 2003 Direct measurement of poloidal long-wavelength E × B flows in the HT-7 tokamak. Phys. Rev. Lett. 91 (12), 125001.CrossRefGoogle Scholar
Yousefi, A., Costa, P., Picano, F. & Brandt, L. 2023 On the role of inertia in channel flows of finite-size neutrally buoyant particles. J. Fluid Mech. 955, A30.CrossRefGoogle Scholar
Zhang, H. 2024 Structure and coupling characteristics of multiple fields in dust storms. Acta Mech. Sin. 40 (3), 123339.CrossRefGoogle Scholar
Zhang, H., Cui, Y. & Zheng, X. 2023 How electrostatic forces affect particle behaviour in turbulent channel flows. J. Fluid Mech. 967, A8.CrossRefGoogle Scholar
Zhang, H. & Liu, Y. 2023 Three distinct scales dominate the role of eolian electric fields in dust turbulent transport. Phys. Fluids 35 (10), 101704.CrossRefGoogle Scholar
Zhang, H., Tan, X. & Zheng, X. 2023 Multifield intermittency of dust storm turbulence in the atmospheric surface layer. J. Fluid Mech. 963, A15.CrossRefGoogle Scholar
Zhang, H. & Zhou, Y.H. 2020 Reconstructing the electrical structure of dust storms from locally observed electric field data. Nat. Commun. 11 (1), 5072.CrossRefGoogle ScholarPubMed
Zhang, H. & Zhou, Y.H. 2023 Unveiling the spectrum of electrohydrodynamic turbulence in dust storms. Nat. Commun. 14 (1), 408.CrossRefGoogle ScholarPubMed
Zheng, X. 2009 Mechanics of Wind-Blown Sand Movements. Springer Science & Business Media.CrossRefGoogle Scholar
Zheng, X.J. 2013 Electrification of wind-blown sand: recent advances and key issues. Eur. Phys. J. E 36 (12), 138.CrossRefGoogle ScholarPubMed
Zheng, X.J., Huang, N. & Zhou, Y.H. 2003 Laboratory measurement of electrification of wind-blown sands and simulation of its effect on sand saltation movement. J. Geophys. Res.-Atmos. 108 (D10), 4322.CrossRefGoogle Scholar
Zhou, Y.H. 2021 Wavelet Numerical Method and Its Applications in Nonlinear Problems. Springer.CrossRefGoogle Scholar