Hostname: page-component-cd9895bd7-7cvxr Total loading time: 0 Render date: 2025-01-02T22:24:25.547Z Has data issue: false hasContentIssue false

Zonal flow in a resonant precessing cylinder

Published online by Cambridge University Press:  30 July 2021

Donglai Gao
Affiliation:
Aix Marseille Univ, CNRS, Centrale Marseille, IRPHE, 13013Marseille, France Joint laboratory of wind tunnel and wave flume, Harbin Institute of Technology, Harbin, PR China
Patrice Meunier
Affiliation:
Aix Marseille Univ, CNRS, Centrale Marseille, IRPHE, 13013Marseille, France
Stéphane Le Dizès
Affiliation:
Aix Marseille Univ, CNRS, Centrale Marseille, IRPHE, 13013Marseille, France
Christophe Eloy*
Affiliation:
Aix Marseille Univ, CNRS, Centrale Marseille, IRPHE, 13013Marseille, France
*
Email address for correspondence: celoy@ec-m.fr

Abstract

A cylinder undergoes precession when it rotates around its axis and this axis itself rotates around another axis. In a precessing cylinder full of fluid, a steady and axisymmetric component of the azimuthal flow is generally present. This component is called a zonal flow. Although zonal flows have been often observed in experiments and numerical simulations, their origin has eluded theoretical approaches so far. Here, we develop an asymptotic analysis to calculate the zonal flow forced in a resonant precessing cylinder, that is when the harmonic response is dominated by a single Kelvin mode. We find that the zonal flow originates from three different sources: (1) the nonlinear interaction of the inviscid Kelvin mode with its viscous correction; (2) the steady and axisymmetric response to the nonlinear interaction of the Kelvin mode with itself; and (3) the nonlinear interactions in the end boundary layers. In a precessing cylinder, two additional sources arise due to the equatorial Coriolis force and the forced shear flow; however, they cancel exactly. The study thus generalises to any Kelvin mode, forced by precession or any other mechanism. The present theoretical predictions of the zonal flow are confirmed by comparison with numerical simulations and experimental results. We also show numerically that the zonal flow is always retrograde in a resonant precessing cylinder ($m=1$) or when it results from resonant Kelvin modes of azimuthal wavenumbers $m=2$, $3$ and, presumably, higher.

Type
JFM Papers
Copyright
© The Author(s), 2021. Published by Cambridge University Press

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Albrecht, T., Blackburn, H.M., Lopez, J.M., Manasseh, R. & Meunier, P. 2015 Triadic resonances in precessing rapidly rotating cylinder flows. J. Fluid Mech. 778, R1.CrossRefGoogle Scholar
Albrecht, T., Blackburn, H.M., Lopez, J.M., Manasseh, R. & Meunier, P. 2018 On triadic resonance as an instability mechanism in precessing cylinder flow. J. Fluid Mech. 841, R3.CrossRefGoogle Scholar
Albrecht, T., Blackburn, H.M., Lopez, J.M., Manasseh, R. & Meunier, P. 2021 On the origins of steady streaming in precessing fluids. J. Fluid Mech. 910, A51.CrossRefGoogle Scholar
Aldridge, K.D. & Toomre, A. 1969 Axisymmetric inertial oscillations of a fluid in a rotating spherical container. J. Fluid Mech. 37, 307323.CrossRefGoogle Scholar
Bryan, G. 1889 The waves on a rotating liquid spheroid of finite ellipticity. Philos. Trans. R. Soc. Lond. A 180, 187219.Google Scholar
Busse, F.H. 1968 Steady fluid flow in a precessing spheroidal shell. J. Fluid Mech. 33 (4), 739751.CrossRefGoogle Scholar
Busse, F.H. 2010 Mean zonal flows generated by librations of a rotating spherical cavity. Physica D 240, 208211.CrossRefGoogle Scholar
Cébron, D. & Hollerbach, R. 2014 Tidally driven dynamos in a rotating sphere. Astrophys. J. Lett. 789, L25.CrossRefGoogle Scholar
Eloy, C., Le Gal, P. & Le Dizès, S. 2003 Elliptic and triangular instabilities in rotating cylinders. J. Fluid Mech. 476, 357388.CrossRefGoogle Scholar
Favier, B., Barker, A.J., Baruteau, C. & Ogilvie, G.I. 2014 Non-linear evolution of tidally forced inertial waves in rotating fluid bodies. Mon. Not. R. Astron. Soc. 439, 845860.CrossRefGoogle Scholar
Gans, R.F. 1970 On the precession of a resonant cylinder. J. Fluid Mech. 476, 865872.CrossRefGoogle Scholar
Gans, R.F. 1984 Dynamics of a near-resonant fluid-filled gyroscope. AIAA J. 22, 14651471.CrossRefGoogle Scholar
Giesecke, A., Vogt, T., Gundrum, T. & Stefani, F. 2018 Nonlinear large scale flow in a precessing cylinder and its ability to drive dynamo action. Phys. Rev. Lett. 120 (2), 024502.CrossRefGoogle Scholar
Greenspan, H.P. 1968 The Theory of Rotating Fluids. Cambridge University Press.Google Scholar
Greenspan, H.P. 1969 On the non-linear interaction of inertial modes. J. Fluid Mech. 36, 257264.CrossRefGoogle Scholar
Herault, J., Giesecke, A., Gundrum, T. & Stefani, F. 2019 Instability of precession driven Kelvin modes: Evidence of a detuning effect. Phys. Rev. Fluids 4 (3), 033901.CrossRefGoogle Scholar
Hollerbach, R. & Kerswell, R.R. 1995 Oscillatory internal shear layers in rotating and precessing flows. J. Fluid Mech. 298, 327339.CrossRefGoogle Scholar
Horimoto, Y., Simonet-Davin, G., Katayama, A. & Goto, S. 2018 Impact of a small ellipticity on the sustainability condition of developed turbulence in a precessing spheroid. Phys. Rev. Fluids 3 (4), 044603.CrossRefGoogle Scholar
Jiang, J., Kong, D., Zhu, R. & Zhang, K. 2015 Precessing cylinders at the second and third resonance: turbulence controlled by geostrophic flow. Phys. Rev. E 92 (3), 033007.CrossRefGoogle Scholar
Kelvin, L. 1880 Vibrations of a columnar vortex. London, Edinburgh Dublin Philos. Mag. J. Sci. 10 (61), 155168.Google Scholar
Kerswell, R.R. 1995 On the internal shear layers spawned by the critical regions in oscillatory Ekman boundary layers. J. Fluid Mech. 298, 311325.CrossRefGoogle Scholar
Kerswell, R.R. 1999 Secondary instabilities in rapidly rotating fluids: inertial wave breakdown. J. Fluid Mech. 382, 283306.CrossRefGoogle Scholar
Kobine, J.J. 1995 Inertial wave dynamics in a rotating and precessing cylinder. J. Fluid Mech. 303, 233252.CrossRefGoogle Scholar
Kobine, J.J. 1996 Azimuthal flow associated with inertial wave resonance in a precessing cylinder. J. Fluid Mech. 319, 387406.CrossRefGoogle Scholar
Lagrange, R, Meunier, P. & Eloy, C. 2016 Triadic instability of a non-resonant precessing fluid cylinder. C. R. Méc. 344 (6), 418433.CrossRefGoogle Scholar
Lagrange, R., Meunier, P., Nadal, F. & Eloy, C. 2011 Precessional instability of a fluid cylinder. J. Fluid Mech. 666, 104145.CrossRefGoogle Scholar
Lambelin, J.-P., Nadal, F., Lagrange, R. & Sarthou, A. 2009 Non-resonant viscous theory for the stability of a fluid-filled gyroscope. J. Fluid Mech. 639, 167194.CrossRefGoogle Scholar
Le Bars, M., Cébron, D. & Le Gal, P. 2015 Flows driven by libration, precession, and tides. Annu. Rev. Fluid Mech. 47, 163193.CrossRefGoogle Scholar
Le Dizès, S. 2020 Reflection of oscillating internal shear layers: nonlinear corrections. J. Fluid Mech. 899, A21.CrossRefGoogle Scholar
Le Dizès, S. & Le Bars, M. 2017 Internal shear layers from librating objects. J. Fluid Mech. 826, 653675.CrossRefGoogle Scholar
Le Reun, T., Favier, B. & Le Bars, M. 2019 Experimental study of the nonlinear saturation of the elliptical instability: inertial wave turbulence versus geostrophic turbulence. J. Fluid Mech. 879, 296326.CrossRefGoogle Scholar
Lin, Y. & Noir, J. 2021 Libration-driven inertial waves and mean zonal flows in spherical shells. Geophys. Astrophys. Fluid Dyn. 115 (3), 258279.CrossRefGoogle Scholar
Lopez, J.M. & Marques, F. 2011 Instabilities and inertial waves generated in a librating cylinder. J. Fluid Mech. 687, 171193.CrossRefGoogle Scholar
Lopez, J.M. & Marques, F. 2018 Rapidly rotating precessing cylinder flows: forced triadic resonances. J. Fluid Mech. 839, 239270.CrossRefGoogle Scholar
Malkus, W.V.R. 1968 Precession of the earth as the cause of geomagnetism: experiments lend support to the proposal that precessional torques drive the earth's dynamo. Science 160 (3825), 259264.CrossRefGoogle ScholarPubMed
Manasseh, R. 1992 Breakdown regimes of inertia waves in a precessing cylinder. J. Fluid Mech. 243, 261296.CrossRefGoogle Scholar
Manasseh, R. 1994 Distortions of inertia waves in a rotating fluid cylinder forced near its fundamental mode resonance. J. Fluid Mech. 265, 345370.CrossRefGoogle Scholar
Manasseh, R. 1996 Nonlinear behaviour of contained inertia waves. J. Fluid Mech. 315, 151173.CrossRefGoogle Scholar
Marques, F. & Lopez, J.M. 2015 Precession of a rapidly rotating cylinder flow: traverse through resonance. J. Fluid Mech. 782, 6398.CrossRefGoogle Scholar
Mason, D.M. & Kerswell, R.R. 1999 Nonlinear evolution of the elliptical instability: an example of inertial wave breakdown. J. Fluid Mech. 396, 73108.CrossRefGoogle Scholar
Mason, R.M. & Kerswell, R.R. 2002 Chaotic dynamics in a strained rotating flow: a precessing plane fluid layer. J. Fluid Mech. 471, 71106.CrossRefGoogle Scholar
McEwan, A.D. 1970 Inertial oscillations in a rotating fluid cylinder. J. Fluid Mech. 40 (3), 603640.CrossRefGoogle Scholar
Meunier, P. 2020 Geoinspired soft mixers. J. Fluid Mech. 903, A15.CrossRefGoogle Scholar
Meunier, P., Eloy, C., Lagrange, R. & Nadal, F. 2008 A rotating fluid cylinder subject to weak precession. J. Fluid Mech. 599, 405440.CrossRefGoogle Scholar
Morize, C., Le Bars, M., Le Gal, P. & Tilgner, A. 2010 Experimental determination of zonal winds driven by tides. Phys. Rev. Lett. 104, 214501.CrossRefGoogle ScholarPubMed
Nobili, C., Meunier, P., Favier, B. & Le Bars, M. 2021 Hysteresis and instabilities in a spheroid in precession near the resonance with the tilt-over mode. J. Fluid Mech. 909 (A17), 121.CrossRefGoogle Scholar
Noir, J., Calkins, M.A., Lasbleis, M., Cantwell, J. & Aurnou, J.M. 2010 Experimental study of libration-driven zonal flows in a straight cylinder. Phys. Earth Planet. Inter. 182, 98106.CrossRefGoogle Scholar
Noir, J., Jault, D. & Cardin, P. 2001 Numerical study of the motions within a slowly precessing sphere at low Ekman number. J. Fluid Mech. 437, 283–29.CrossRefGoogle Scholar
Poincaré, H. 1910 Sur la précession des corps déformables. Bull. Astron. I 27, 321356.Google Scholar
Racz, J.-P. & Scott, J.F. 2008 Parametric instability in a rotating cylinder of gas subject to sinusoidal axial compression. Part 2. Weakly nonlinear theory. J. Fluid Mech. 595, 291321.CrossRefGoogle Scholar
Rieutord, M. & Valdettaro, L. 1997 Inertial waves in a rotating spherical shell. J. Fluid Mech. 341, 7799.CrossRefGoogle Scholar
Rieutord, M. & Valdettaro, L. 2018 Axisymmetric inertial modes in a spherical shell at low Ekman numbers. J. Fluid Mech. 844, 597634.CrossRefGoogle Scholar
Riley, N. 2001 Steady streaming. Annu. Rev. Fluid Mech. 33 (1), 4365.CrossRefGoogle Scholar
Sauret, A., Cébron, D., Le Bars, M. & Le Dizès, S. 2012 Fluid flows in a librating cylinder. Phys. Fluids 24, 026603.CrossRefGoogle Scholar
Sloudsky, T. 1895 De la rotation de la terre supposée fluide à son intérieur. Bull. Soc. Imp. Natur. Mosc. IX, 285318.Google Scholar
Stewartson, K. 1959 On the stability of a spinning top containing liquid. J. Fluid Mech. 5, 577592.CrossRefGoogle Scholar
Tilgner, A. 2005 Precession driven dynamos. Phys. Fluids 17, 034104.CrossRefGoogle Scholar
Tilgner, A. 2007 Zonal wind driven by inertial modes. Phys. Rev. Lett. 99, 194501.CrossRefGoogle ScholarPubMed
Waleffe, F. 1989 The 3D instability of a strained vortex and its relation to turbulence. PhD thesis, Massachusetts Institute of Technology.Google Scholar
Wang, C.-Y. 1970 Cylindrical tank of fluid oscillating about a state of steady rotation. J. Fluid Mech. 41 (3), 581592.CrossRefGoogle Scholar
Wu, C. & Roberts, P. 2009 On a dynamo driven by topographic precession. Geophys. Astrophys. Fluid Dyn. 103, 467501.CrossRefGoogle Scholar
Wu, C. & Roberts, P. 2013 On a dynamo driven topographically by longitudinal libration. Geophys. Astrophys. Fluid Dyn. 107, 2044.CrossRefGoogle Scholar