Hostname: page-component-cd9895bd7-dk4vv Total loading time: 0 Render date: 2024-12-28T05:31:46.209Z Has data issue: false hasContentIssue false

Acoustic emissions by vortex motions

Published online by Cambridge University Press:  21 April 2006

T. Kambe
Affiliation:
Department of Physics, University of Tokyo, Hongo, Bunkyo-ku, Tokyo 113, Japan

Abstract

Fundamental aspects of the acoustic emission by vortex motions are considered by summarizing our recent work. Three typical cases are presented as illustrative examples: (i) head-on collision of two vortex rings, (ii) a vortex ring moving near a circular cylinder, and (iii) a vortex ring moving near a sharp edge of a semi-infinite plate. The theory of aerodynamic sound for low-Mach-number motion of an inviscid fluid predicts that the amplitude of the acoustic pressure in the far field is proportional to U4, U3 and U2.5 for (i)-(iii) respectively, where U is the translation velocity of a single vortex ring. Therefore the vortex-edge interaction generates the most powerful sound among the three cases at low Mach numbers. Our observations have confirmed these scaling laws. In addition to the scaling properties, we show the wave profiles of the emission as well as the directionality pattern. The head-on collision radiates waves of quadrupole directionality, whereas waves of dipole property are originated by the vortex-cylinder interaction. The third, vortex-edge, interaction generates waves of a cardioid directionality pattern. The wave profiles of all three cases are related to the time derivatives of the volume flux (through the vortex ring) of an imaginary potential flow which is characteristic of each configuration, although the orders of the time derivatives are different for each case. The observed profiles are surprisingly well fitted to the curves predicted by the theory, except the final period of the first case, in which viscosity is assumed to play an important role. The observed wave profiles are shown in a perspective diagram.

Type
Research Article
Copyright
© 1986 Cambridge University Press

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Crighton, D. G. 1972 J. Fluid Mech. 51, 357362.
Crighton, D. G. & Leppington, F. G. 1970 J. Fluid Mech. 43, 721736.
Crow, S. C. 1970 Stud. Appl. Math. 49, 2144.
Curle, N. 1955 Proc. R. Soc. Lond. A 231, 505514.
Dyson, F. W. 1893 Phil. Trans. R. Soc. Lond. A 184, 10411106.
Ffowcs Williams, J. E. 1969 Ann. Rev. Fluid Mech. 1, 197222.
Ffowcs Williams, J. E. & Hall, L. H. 1970 J. Fluid Mech. 40, 657670.
Howe, M. S. 1975a J. Fluid Mech. 67, 597610.
Howe, M. S. 1975b J. Fluid Mech. 71, 625673.
Kambe, T. 1984 J. Sound Vib. 95, 351360.
Kambe, T. & Minota, T. 1981 J. Sound Vib. 74, 6172.
Kambe, T. & Minota, T. 1983 Proc. R. Soc. Lond. A 386, 277308.
Kambe, T., Minota, T. & Ikushima, Y. 1985 J. Fluid Mech. 155, 77103.
Kambe, T., Minota, T. & Ikushima, Y. 1986 In Proc. IUTAM Symp. on Aero- and Hydroacoustics, Lyon 1985 (eds. G. Comte-Bellot & J. E. Ffowcs Williams). Springer.
Lauvstad, V. R. 1968 J. Sound Vib. 7, 90105.
Lighthill, M. J. 1952 Proc. R. Soc. Lond. A 211, 564587.
Macdonald, H. M. 1915 Proc. Lond. Math. Soc. 14, 410427.
Minota, T. & Kambe, T. 1986 J. Sound Vib. 110, (in press).
Miyazaki, T. & Kambe, T. 1986 Phys. Fluids (in press).
Möhring, W. 1978 J. Fluid Mech. 85, 685691.
Möhring, W., Müller, E.-A. & Obermeier, F. 1969 Acustica 21, 184188.
Morfey, C. L. 1976 J. Sound Vib. 48, 95111.
Müller, E.-A. & Obermeier, F. 1967 AGARD Conf. Proc. 22, 22.1–22.8.
Noble, B. 1958 Methods Based on the Wiener-Hopf Technique. Pergamon.
Obermeier, F. 1967 Acustica 18, 238240.
Obermeier, F. 1976 In Singular Perturbations and Boundary Layer Theory. Lecture Notes in Mathematics, vol. 594, pp. 400421. Springer.
Obermeier, F. 1979 Acustica 42, 5671.
Obermeier, F. 1980 J. Sound Vib. 72, 3949.
Obermeier, F. 1985 J. Sound Vib. 99, 111120.
Powell, A. 1964 J. Acoust. Soc. Am. 36, 177195.