Hostname: page-component-745bb68f8f-cphqk Total loading time: 0 Render date: 2025-01-07T11:10:28.841Z Has data issue: false hasContentIssue false

Acoustic responses of underwater superhydrophobic surfaces subjected to an intense pulse

Published online by Cambridge University Press:  07 February 2023

Adrien Bussonnière*
Affiliation:
Laboratoire Matière et Systèmes Complexes, Université Paris Cité, UMR CNRS 7057, 75013 Paris, France Department of Chemical and Materials Engineering, University of Alberta, Edmonton, AB T6G 1H9, Canada Department of Mechanical Engineering, University of Alberta, Edmonton, AB T6G 1H9, Canada
Qingxia Chad Liu
Affiliation:
Department of Chemical and Materials Engineering, University of Alberta, Edmonton, AB T6G 1H9, Canada
Peichun Amy Tsai*
Affiliation:
Department of Mechanical Engineering, University of Alberta, Edmonton, AB T6G 1H9, Canada
*
Email addresses for correspondence: adrien.bussonniere@cnrs.fr, peichun.amy.tsai@ualberta.ca
Email addresses for correspondence: adrien.bussonniere@cnrs.fr, peichun.amy.tsai@ualberta.ca

Abstract

Underwater stability of an air layer trapped in a micro-structure, plastron, is critical in drag reduction applications. Here, we investigate the wetting state and plastron stability of underwater superhydrophobic surfaces (SHS) under an intense acoustic drive. Flat surfaces and SHS are subjected to short acoustic pulses of different intensities. At low amplitude, the comparison between the results of various surfaces shows that plastron behaves like a water–air interface, whose presence can be detected from the phase of the reflected acoustic waves. At moderate intensity, a wetting transition towards a completely wetting state is observed and shown to be triggered by a sufficiently large acoustic radiation pressure. This wetting transition is well captured by a simplified model by balancing radiation pressure with the critical capillary pressure for the interface sliding. Cavitation clouds appear under strong excitation; their sizes and positions greatly depend on the surface acoustic boundary condition. For SHS in a Cassie–Baxter state (with an air layer), cavitation clouds appear at specific locations (from the solid surface) corresponding to the pressure anti-node of the transient standing wave generated by the reflection. This study unprecedentedly demonstrates the capability of acoustic waves to monitor and characterize plastron stability with low and moderate amplitudes, respectively.

Type
JFM Papers
Copyright
© The Author(s), 2023. Published by Cambridge University Press

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Aldhaleai, A. & Tsai, P.A. 2022 Evaporation dynamics of surfactant-laden droplets on a superhydrophobic surface: influence of surfactant concentration. Langmuir 38 (1), 593601.10.1021/acs.langmuir.1c03097CrossRefGoogle ScholarPubMed
Atchley, A.A. & Prosperetti, A. 1989 The crevice model of bubble nucleation. J. Acoust. Soc. Am. 86 (3), 10651084.CrossRefGoogle Scholar
Baresch, D., Thomas, J.-L. & Marchiano, R. 2013 Three-dimensional acoustic radiation force on an arbitrarily located elastic sphere. J. Acoust. Soc. Am. 133 (1), 2536.CrossRefGoogle Scholar
Bartolo, D., Bouamrirene, F., Verneuil, E., Buguin, A., Silberzan, P. & Moulinet, S. 2006 Bouncing or sticky droplets: impalement transitions on superhydrophobic micropatterned surfaces. Europhys. Lett. 74 (2), 299.10.1209/epl/i2005-10522-3CrossRefGoogle Scholar
Bico, J., Thiele, U. & Quéré, D. 2002 Wetting of textured surfaces. Colloids Surf. (A) 206 (1–3), 4146.10.1016/S0927-7757(02)00061-4CrossRefGoogle Scholar
Bobji, M.S., Kumar, S.V., Asthana, A. & Govardhan, R.N. 2009 Underwater sustainability of the ‘Cassie’ state of wetting. Langmuir 25 (20), 1212012126.CrossRefGoogle ScholarPubMed
Borgnis, F.E. 1952 Acoustic radiation pressure of plane-compressional waves at oblique incidence. J. Acoust. Soc. Am. 24 (5), 468469.CrossRefGoogle Scholar
Bormashenko, E., Pogreb, R., Whyman, G. & Erlich, M. 2007 Cassie–Wenzel wetting transition in vibrating drops deposited on rough surfaces: is the dynamic Cassie–Wenzel wetting transition a 2D or 1D affair? Langmuir 23 (12), 65016503.CrossRefGoogle ScholarPubMed
Bruus, H. 2012 Acoustofluidics 7: the acoustic radiation force on small particles. Lab on a Chip 12 (6), 10141021.CrossRefGoogle ScholarPubMed
Bussonnière, A., Bigdeli, M.B., Chueh, D.-Y., Liu, Q., Chen, P. & Tsai, P.A. 2017 Universal wetting transition of an evaporating water droplet on hydrophobic micro-and nano-structures. Soft Matt. 13 (5), 978984.CrossRefGoogle ScholarPubMed
Bussonniere, A., Liu, Q. & Tsai, P.A. 2020 Cavitation nuclei regeneration in a water-particle suspension. Phys. Rev. Lett. 124 (3), 034501.CrossRefGoogle Scholar
Castagna, M., Mazellier, N. & Kourta, A. 2018 Wake of super-hydrophobic falling spheres: influence of the air layer deformation. J. Fluid Mech. 850, 646673.CrossRefGoogle Scholar
Dufour, R., Saad, N., Carlier, J., Campistron, P., Nassar, G., Toubal, M., Boukherroub, R., Senez, V., Nongaillard, B. & Thomy, V. 2013 Acoustic tracking of Cassie to Wenzel wetting transitions. Langmuir 29 (43), 1312913134.CrossRefGoogle ScholarPubMed
Feng, G., Li, F., Xue, W., Sun, K., Yang, H., Pan, Q. & Cao, Y. 2019 Laser textured GFRP superhydrophobic surface as an underwater acoustic absorption metasurface. Appl. Surf. Sci. 463, 741746.CrossRefGoogle Scholar
Harvey, E.N., Barnes, D.K., McElroy, W.D., Whiteley, A.H., Pease, D.C. & Cooper, K.W. 1944 Bubble formation in animals. I. Physical factors. J. Cell. Compar. Physiol. 24 (1), 122.CrossRefGoogle Scholar
Issenmann, B., Wunenburger, R., Chraibi, H., Gandil, M. & Delville, J.-P. 2011 Unsteady deformations of a free liquid surface caused by radiation pressure. J. Fluid Mech. 682, 460490.CrossRefGoogle Scholar
Jung, Y.C. & Bhushan, B. 2007 Wetting transition of water droplets on superhydrophobic patterned surfaces. Scr. Mater. 57 (12), 10571060.CrossRefGoogle Scholar
Karatay, E., Haase, A.S., Visser, C.W., Sun, C., Lohse, D., Tsai, P.A. & Lammertink, R.G.H. 2013 Control of slippage with tunable bubble mattresses. Proc. Natl Acad. Sci. USA 110 (21), 84228426.CrossRefGoogle ScholarPubMed
Lafuma, A. & Quéré, D. 2003 Superhydrophobic states. Nat. Mater. 2 (7), 457460.CrossRefGoogle ScholarPubMed
Li, S., Lamant, S., Carlier, J., Toubal, M., Campistron, P., Xu, X., Vereecke, G., Senez, V., Thomy, V. & Nongaillard, B. 2014 High-frequency acoustic for nanostructure wetting characterization. Langmuir 30 (25), 76017608.CrossRefGoogle ScholarPubMed
Lv, P., Xue, Y., Shi, Y., Lin, H. & Duan, H. 2014 Metastable states and wetting transition of submerged superhydrophobic structures. Phys. Rev. Lett. 112 (19), 196101.CrossRefGoogle ScholarPubMed
Maruvada, S., Liu, Y., Soneson, J.E., Herman, B.A. & Harris, G.R. 2015 Comparison between experimental and computational methods for the acoustic and thermal characterization of therapeutic ultrasound fields. J. Acoust. Soc. Am. 137 (4), 17041713.CrossRefGoogle ScholarPubMed
Mata, A., Fleischman, A.J. & Roy, S. 2005 Characterization of polydimethylsiloxane (PDMS) properties for biomedical micro/nanosystems. Biomed. Microdevices 7 (4), 281293.CrossRefGoogle ScholarPubMed
McHale, G., Aqil, S., Shirtcliffe, N.J., Newton, M.I. & Erbil, H.Y. 2005 Analysis of droplet evaporation on a superhydrophobic surface. Langmuir 21 (24), 1105311060.CrossRefGoogle ScholarPubMed
Moulinet, S. & Bartolo, D. 2007 Life and death of a fakir droplet: impalement transitions on superhydrophobic surfaces. Eur. Phys. J. E 24 (3), 251260.CrossRefGoogle ScholarPubMed
Papadopoulos, P., Mammen, L., Deng, X., Vollmer, D. & Butt, H.-J. 2013 How superhydrophobicity breaks down. Proc. Natl Acad. Sci. USA 110 (9), 32543258.CrossRefGoogle ScholarPubMed
Poetes, R., Holtzmann, K., Franze, K. & Steiner, U. 2010 Metastable underwater superhydrophobicity. Phys. Rev. Lett. 105 (16), 166104.CrossRefGoogle ScholarPubMed
Quéré, D. 2008 Wetting and roughness. Annu. Rev. Mater. Res. 38 (1), 7199.CrossRefGoogle Scholar
Reyssat, M., Yeomans, J.M. & Quéré, D. 2007 Impalement of fakir drops. Europhys. Lett. 81 (2), 26006.CrossRefGoogle Scholar
Rothstein, J.P. 2010 Slip on superhydrophobic surfaces. Annu. Rev. Fluid Mech. 42, 89109.CrossRefGoogle Scholar
Saad, N., et al. 2012 Characterization of the state of a droplet on a micro-textured silicon wafer using ultrasound. J. Appl. Phys. 112 (10), 104908.CrossRefGoogle Scholar
Seo, J., García-Mayoral, R. & Mani, A. 2018 Turbulent flows over superhydrophobic surfaces: flow-induced capillary waves, and robustness of air–water interfaces. J. Fluid Mech. 835, 4585.CrossRefGoogle Scholar
Shardt, N., Bigdeli, M.B., Elliott, J.A.W. & Tsai, P.A. 2019 How surfactants affect droplet wetting on hydrophobic microstructures. J. Phys. Chem. Lett. 10 (23), 75107515.CrossRefGoogle ScholarPubMed
Soneson, J.E. 2009 A user-friendly software package for HIFU simulation. In AIP Conference Proceedings, vol. 1113, pp. 165–169. American Institute of Physics.CrossRefGoogle Scholar
Sudeepthi, A., Yeo, L. & Sen, A.K. 2020 Cassie–Wenzel wetting transition on nanostructured superhydrophobic surfaces induced by surface acoustic waves. Appl. Phys. Lett. 116 (9), 093704.CrossRefGoogle Scholar
Tanter, M., Thomas, J.-L., Coulouvrat, F. & Fink, M. 2001 Breaking of time reversal invariance in nonlinear acoustics. Phys. Rev. E 64 (1), 016602.CrossRefGoogle ScholarPubMed
Tong, L., et al. 2020 An acoustic meta-skin insulator. Adv. Mater. 32 (37), 2002251.CrossRefGoogle ScholarPubMed
Tsai, P., Lammertink, R.G.H., Wessling, M. & Lohse, D. 2010 Evaporation-triggered wetting transition for water droplets upon hydrophobic microstructures. Phys. Rev. Lett. 104, 116102.CrossRefGoogle ScholarPubMed
Verho, T., Korhonen, J.T., Sainiemi, L., Jokinen, V., Bower, C., Franze, K., Franssila, S., Andrew, P., Ikkala, O. & Ras, R.H.A. 2012 Reversible switching between superhydrophobic states on a hierarchically structured surface. Proc. Natl Acad. Sci. USA 109 (26), 1021010213.CrossRefGoogle ScholarPubMed
Westervelt, P.J. 1957 Acoustic radiation pressure. J. Acoust. Soc. Am. 29 (1), 2629.CrossRefGoogle Scholar
Xiang, Y., Huang, S., Lv, P., Xue, Y., Su, Q. & Duan, H. 2017 Ultimate stable underwater superhydrophobic state. Phys. Rev. Lett. 119 (13), 134501.CrossRefGoogle ScholarPubMed
Xu, G., Ni, Z., Chen, X., Tu, J., Guo, X., Bruus, H. & Zhang, D. 2020 Acoustic characterization of polydimethylsiloxane for microscale acoustofluidics. Phys. Rev. Appl. 13 (5), 054069.CrossRefGoogle Scholar
Yoshimitsu, Z., Nakajima, A., Watanabe, T. & Hashimoto, K. 2002 Effects of surface structure on the hydrophobicity and sliding behavior of water droplets. Langmuir 18 (15), 58185822.CrossRefGoogle Scholar
Zheng, Q., Durben, D.J., Wolf, G.H. & Angell, C.A. 1991 Liquids at large negative pressures: water at the homogeneous nucleation limit. Science 254 (5033), 829832.CrossRefGoogle ScholarPubMed