Hostname: page-component-78c5997874-j824f Total loading time: 0 Render date: 2024-11-10T15:49:08.384Z Has data issue: false hasContentIssue false

Active control of a turbulent boundary layer based on local surface perturbation

Published online by Cambridge University Press:  09 June 2014

H. L. Bai
Affiliation:
Institute for Turbulence–Noise–Vibration Interaction and Control, Shenzhen Graduate School, Harbin Institute of Technology, Shenzhen, China
Y. Zhou*
Affiliation:
Institute for Turbulence–Noise–Vibration Interaction and Control, Shenzhen Graduate School, Harbin Institute of Technology, Shenzhen, China
W. G. Zhang
Affiliation:
State Key Laboratory of Aerodynamics, Mianyang 621000, China
S. J. Xu
Affiliation:
School of Aerospace, Tsinghua University, Beijing 100084, China
Y. Wang
Affiliation:
Institute for Turbulence–Noise–Vibration Interaction and Control, Shenzhen Graduate School, Harbin Institute of Technology, Shenzhen, China
R. A. Antonia
Affiliation:
School of Engineering, University of Newcastle, Callaghan, NSW 2308, Australia
*
Email address for correspondence: zhouyu@hitsz.edu.cn

Abstract

Active control of a turbulent boundary layer has been experimentally investigated with a view to reducing the skin-friction drag and gaining some insight into the mechanism that leads to drag reduction. A spanwise-aligned array of piezo-ceramic actuators was employed to generate a transverse travelling wave along the wall surface, with a specified phase shift between adjacent actuators. Local skin-friction drag exhibits a strong dependence on control parameters, including the wavelength, amplitude and frequency of the oscillation. A maximum drag reduction of 50 % has been achieved at 17 wall units downstream of the actuators. The near-wall flow structure under control, measured using smoke–wire flow visualization, hot-wire and particle image velocimetry techniques, is compared with that without control. The data have been carefully analysed using techniques such as streak detection, power spectra and conditional averaging based on the variable-interval time-average detection. All the results point to a pronounced change in the organization of the perturbed boundary layer. It is proposed that the actuation-induced wave generates a layer of highly regularized streamwise vortices, which acts as a barrier between the large-scale coherent structures and the wall, thus interfering with the turbulence production cycle and contributing partially to the drag reduction. Associated with the generation of regularized vortices is a significant increase, in the near-wall region, of the mean energy dissipation rate, as inferred from a substantial decrease in the Taylor microscale. This increase also contributes to the drag reduction. The scaling of the drag reduction is also examined empirically, providing valuable insight into the active control of drag reduction.

Type
Papers
Copyright
© 2014 Cambridge University Press 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Alfredsson, P. H. & Johansson, A. V. 1984 On the detection of turbulence-generating events. J. Fluid Mech. 139, 325345.CrossRefGoogle Scholar
Antonia, R. A. & Bisset, D. K. 1990 Spanwise structure in the near-wall region of a turbulent boundary layer. J. Fluid Mech. 210, 437458.CrossRefGoogle Scholar
Antonia, R. A., Fulachier, L., Krishnamoorthy, L. V., Benabid, T. & Anselmet, F. 1988 Influence of wall suction on the organized motion in a turbulent boundary layer. J. Fluid Mech. 190, 217240.CrossRefGoogle Scholar
Antonia, R. A. & Kim, J. 1991 Turbulent Prandtl number in the near-wall region of a turbulent channel flow. Intl J. Heat Mass Transfer 34 (7), 19051908.CrossRefGoogle Scholar
Antonia, R. A., Zhu, Y. & Sokolov, M. 1995 Effect of concentrated wall suction on a turbulent boundary layer. Phys. Fluids 7, 24652474.CrossRefGoogle Scholar
Berger, T. W., Kim, J., Lee, C. & Lim, J. 2000 Turbulent boundary layer control utilizing the Lorentz force. Phys. Fluids 12, 3149.CrossRefGoogle Scholar
Bernard, P. S., Thomas, J. M. & Handler, R. A. 1993 Vortex dynamics and the production of Reynolds stress. J. Fluid Mech. 253, 385419.CrossRefGoogle Scholar
Blackwelder, R. F. & Haritonidis, J. H. 1983 Scaling of the bursting frequency in turbulent layers. J. Fluid Mech. 132, 87103.CrossRefGoogle Scholar
Blackwelder, R. F. & Kaplan, R. E. 1976 On the wall structure of the turbulent boundary layer. J. Fluid Mech. 76, 89112.CrossRefGoogle Scholar
Castillo, E. 1988 Extreme Value Theory in Engineering. Academic Press.Google Scholar
Chen, C.-H. P. & Blackwelder, R. F. 1978 Large-scale motion in a turbulent boundary layer: a study using temperature contamination. J. Fluid Mech. 89, 131.CrossRefGoogle Scholar
Choi, H., Moin, P. & Kim, J. 1993 Direct numerical simulation of turbulent flow over riblets. J. Fluid Mech. 255, 503539.CrossRefGoogle Scholar
Choi, K.-S. 1989 Near-wall structure of a turbulent boundary layer with riblets. J. Fluid Mech. 208, 417458.CrossRefGoogle Scholar
Choi, K.-S. 2002 Near-wall structure of turbulent boundary layer with spanwise-wall oscillation. Phys. Fluids 14 (7), 25302542.CrossRefGoogle Scholar
Choi, K.-S. & Clayton, B. 2001 The mechanism of turbulent drag reduction with wall oscillation. Intl J. Heat Fluid Flow 22, 19.CrossRefGoogle Scholar
Choi, K.-S., DeBisschop, J.-R. & Clayton, B. R. 1998 Turbulent boundary-layer control by means of spanwise-wall oscillation. AIAA J. 36 (7), 11571163.CrossRefGoogle Scholar
Depardon, S., Lasserre, J. J., Boueilh, L. E. & Borée, J. 2005 Skin friction pattern analysis using near-wall PIV. Exp. Fluids 39, 805818.CrossRefGoogle Scholar
Dhanak, M. R. & Si, C. 1999 On reduction of turbulent wall friction through spanwise wall oscillations. J. Fluid Mech. 383, 175195.CrossRefGoogle Scholar
Di Cicca, G. M., Iuso, G., Spazzini, P. G. & Onorato, M. 2002 Particle image velocimetry investigation of a turbulent boundary layer manipulated by spanwise wall oscillations. J. Fluid Mech. 467, 4156.CrossRefGoogle Scholar
Du, Y. & Karniadakis, G. E. 2000 Suppressing wall turbulence by means of a transverse travelling wave. Science 288, 12301234.CrossRefGoogle Scholar
Du, Y., Symeonidis, V. & Karniadakis, G. E. 2002 Drag reduction in wall-bounded turbulence via a transverse travelling wave. J. Fluid Mech. 457, 134.CrossRefGoogle Scholar
Endo, T., Kasagi, N. & Suzuki, Y. 2000 Feedback control of wall turbulence with wall deformation. Intl J. Heat Fluid Flow 21, 568575.CrossRefGoogle Scholar
Gad-el-Hak, M. 2000 Flow Control: Passive, Active, and Reactive Flow Management. Cambridge University Press.CrossRefGoogle Scholar
Grosjean, C., Lee, G. B., Hong, W., Tai, Y. C. & Ho, C. M. 1998 Micro balloon actuators for aerodynamic control. In Proceedings of the 11th MEMS Workshop, Heidelberg, 25–29 January 1998, pp. 166171. IEEE.Google Scholar
Huang, J. F., Zhou, Y. & Zhou, T. 2006 Three-dimensional wake structure measurement using a modified PIV technique. Exp. Fluids 40, 884896.CrossRefGoogle Scholar
Huang, L., Fan, B. & Dong, G. 2010 Turbulent drag reduction via a transverse wave travelling along streamwise direction induced by Lorentz force. Phys. Fluids 22, 015103.CrossRefGoogle Scholar
Hutchins, N. & Choi, K.-S. 2002 Accurate measurements of local skin friction coefficient using hot-wire anemometry. Prog. Aeronaut. Sci. 38, 421446.CrossRefGoogle Scholar
Itoh, M., Tamano, S., Yokota, K. & Taniguchi, S. 2006 Drag reduction in a turbulent boundary layer on a flexible sheet undergoing a spanwise travelling wave motion. J. Turbul. 7 (27), 117.CrossRefGoogle Scholar
Iuso, G., Di Cicca, G. M., Onorato, M., Spazzini, P. G. & Malvano, R. 2003 Velocity streak structure modifications induced by flow manipulation. Phys. Fluids 15, 26022612.CrossRefGoogle Scholar
Iuso, G., Onorato, M., Spazzini, P. G. & Di Cicca, G. M. 2002 Wall turbulence manipulated by large-scale streamwise vortices. J. Fluid Mech. 473, 2358.CrossRefGoogle Scholar
Jacobson, S. A. & Reynolds, W. C. 1998 Active control of streamwise vortices and streaks in boundary layers. J. Fluid Mech. 360, 179211.CrossRefGoogle Scholar
Jiménez, J. & Pinelli, A. 1999 The autonomous cycle of near-wall turbulence. J. Fluid Mech. 389, 335359.CrossRefGoogle Scholar
Johansson, A. V., Alfredsson, P. H. & Kim, J. 1991 Evolution and dynamics of shear-layer structures in near-wall turbulence. J. Fluid Mech. 224, 579599.CrossRefGoogle Scholar
Jung, W. J., Mangiavacchi, N. & Akhavan, R. 1992 Suppression of turbulence in wall-bounded flows by high-frequency spanwise oscillations. Phys. Fluids A 4 (8), 16051607.CrossRefGoogle Scholar
Kang, S. & Choi, H. 2000 Active wall motions for skin-friction drag reduction. Phys. Fluids 12 (12), 33013304.CrossRefGoogle Scholar
Karniadakis, G. E. & Choi, K.-S. 2003 Mechanisms on transverse motions in turbulent wall flows. Annu. Rev. Fluid Mech. 35, 4562.CrossRefGoogle Scholar
Kasagi, N., Suzuki, Y. & Fukagata, K. 2009 Microelectromechanical systems-based feedback control of turbulence for skin friction reduction. Annu. Rev. Fluid Mech. 41, 231251.CrossRefGoogle Scholar
Khoo, B. C., Chew, Y. T. & Teo, C. J. 2000 On near-wall hot-wire measurements. Exp. Fluids 29, 448460.CrossRefGoogle Scholar
Kim, J. 1983 On the structure of wall-bounded turbulent flows. Phys. Fluids 26 (8), 20882097.CrossRefGoogle Scholar
Kim, J. 2003 Control of turbulent boundary layers. Phys. Fluids A 15, 10931105.CrossRefGoogle Scholar
Kim, J. 2011 Physics and control of wall turbulence for drag reduction. Phil. Trans. R. Soc. A 369, 13961411.CrossRefGoogle ScholarPubMed
Kim, J., Moin, P. & Moser, R. 1987 Turbulence statistics in fully developed channel flow at low Reynolds number. J. Fluid Mech. 177, 133166.CrossRefGoogle Scholar
Kline, S. J., Reynolds, W. C., Schraub, F. A. & Runstadler, P. W. 1967 The structure of turbulent boundary layers. J. Fluid Mech. 30, 741773.CrossRefGoogle Scholar
Kravchenko, A. G., Choi, H. & Moin, P. 1993 On the generation of near-wall streamwise vortices to wall skin friction in turbulent boundary layers. Phys. Fluids A 5, 33073309.CrossRefGoogle Scholar
Laadhari, F., Skandaji, L. & Morel, R. 1994 Turbulence reduction in a boundary layer by a local spanwise oscillating surface. Phys. Fluids 6 (10), 32183220.CrossRefGoogle Scholar
Liepmann, H. W. & Narasimha, R.(Eds) 1988 Turbulence Management and Relaminarisation. Springer.CrossRefGoogle Scholar
Lu, S. S. & Willmarth, W. W. 1973 Measurements of the structure of the Reynolds stress in a turbulent boundary layer. J. Fluid Mech. 60, 481511.CrossRefGoogle Scholar
Marquillie, M., Ehrenstein, U. & Laval, J.-P. 2011 Instability of streaks in wall turbulence with adverse pressure gradient. J. Fluid Mech. 681, 205240.CrossRefGoogle Scholar
Metzger, M. 2006 Length and time scales of the near-surface axial velocity in a high Reynolds number turbulent boundary layer. Intl J. Heat Fluid Flow 27, 534541.CrossRefGoogle Scholar
Nagano, Y., Tsuji, T. & Houra, T. 1998 Structure of turbulent boundary layer subjected to adverse pressure gradient. Intl J. Heat Fluid Flow 19, 563572.CrossRefGoogle Scholar
Onorato, M. & Iuso, G. 2001 Probability density function and ‘plus’ and ‘minus’ structure functions in a turbulent channel flow. Phys. Rev. E 63, 025203(R).CrossRefGoogle Scholar
Orlandi, P. & Jiménez, J. 1994 On the generation of turbulent wall friction. Phys. Fluids A 6, 634641.CrossRefGoogle Scholar
Pang, J. & Choi, K.-S. 2004 Turbulent drag reduction by Lorentz force oscillation. Phys. Fluids 16 (5), L35L38.CrossRefGoogle Scholar
Park, Y.-S., Park, S.-H. & Sung, H. J. 2003 Measurement of local forcing on a turbulent boundary layer using PIV. Exp. Fluids 34, 697707.CrossRefGoogle Scholar
Quadrio, M. & Ricco, P. 2004 Critical assessment of turbulent drag reduction through spanwise wall oscillations. J. Fluid Mech. 521, 251271.CrossRefGoogle Scholar
Rathnasingham, R. & Breuer, K. S. 2003 Active control of turbulent boundary layers. J. Fluid Mech. 495, 209233.CrossRefGoogle Scholar
Rebbeck, H. & Choi, K.-S. 2006 A wind-tunnel experiment on real-time opposition control of turbulence. Phys. Fluids 18, 035103.CrossRefGoogle Scholar
Robinson, S. K. 1991 Coherent motions in the turbulent boundary layer. Annu. Rev. Fluid Mech. 23, 601639.CrossRefGoogle Scholar
Sandborn, V. A. & Liu, C. Y. 1968 On turbulent boundary-layer separation: part 2. J. Fluid Mech. 32, 293304.CrossRefGoogle Scholar
Schlichting, H. & Gersten, K. 2000 Boundary-Layer Theory. Springer.CrossRefGoogle Scholar
Schoppa, W. & Hussain, F. 1998 A large-scale control strategy for drag reduction in turbulent boundary layer. Phys. Fluids 10 (5), 10491051.CrossRefGoogle Scholar
Schoppa, W. & Hussain, F. 2002 Coherent structure generation in near-wall turbulence. J. Fluid Mech. 453, 57108.CrossRefGoogle Scholar
Segawa, T., Kawaguchi, Y., Kikushima, Y. & Yoshida, H. 2002 Active control of streak structures in wall turbulence using an actuator array producing inclined wavy disturbances. J. Turbul. 3, 115.CrossRefGoogle Scholar
Simpson, R. L., Chew, Y.-T. & Shivaprasad, B. G. 1981 The structure of a separating turbulent boundary layer. Part 1. Mean flow and Reynolds stresses. J. Fluid Mech. 113, 2351.CrossRefGoogle Scholar
Simpson, R. L., Strickland, J. H. & Barr, P. W. 1977 Features of a separating turbulent boundary layer in the vicinity of separation. J. Fluid Mech. 79, 553594.CrossRefGoogle Scholar
Tardu, S. F. 2001 Active control of near-wall turbulence by local oscillating blowing. J. Fluid Mech. 439, 217253.CrossRefGoogle Scholar
Tardu, S. F. & Doche, O. 2009 Active control of the turbulent drag by a localized periodical blowing dissymmetric in time. Exp. Fluids 47, 1926.CrossRefGoogle Scholar
Vaughan, N. J. & Zaki, T. A. 2011 Stability of zero-pressure-gradient boundary layer distorted by unsteady Klebanoff streaks. J. Fluid Mech. 681, 116153.CrossRefGoogle Scholar
Wallace, J. M., Eckelmann, H. & Brodkey, R. S. 1972 The wall region in turbulent shear flow. J. Fluid Mech. 54, 3948.CrossRefGoogle Scholar
Wash, M. J. 1983 Riblets as a viscous drag reduction technique. AIAA J. 21, 485486.Google Scholar
Wilkinson, S. P. & Balasubramanian, R.1985 Turbulent burst control through phase-locked traveling surface depressions. AIAA Paper 85-0536.CrossRefGoogle Scholar