Hostname: page-component-745bb68f8f-l4dxg Total loading time: 0 Render date: 2025-01-28T07:04:20.920Z Has data issue: false hasContentIssue false

Aerodynamics of planar counterflowing jets

Published online by Cambridge University Press:  16 May 2017

A. D. Weiss*
Affiliation:
Department of Mechanical and Aerospace Engineering, University of California San Diego, La Jolla, CA 92093–0411, USA
W. Coenen
Affiliation:
Department of Mechanical and Aerospace Engineering, University of California San Diego, La Jolla, CA 92093–0411, USA
A. L. Sánchez
Affiliation:
Department of Mechanical and Aerospace Engineering, University of California San Diego, La Jolla, CA 92093–0411, USA
*
Email address for correspondence: a2weiss@eng.ucsd.edu

Abstract

The planar laminar flow resulting from the impingement of two gaseous jets of different density issuing into an open space from aligned steadily fed slot nozzles of semi-width $H$ separated by a distance $2L$ is investigated by numerical and analytical methods. Specific consideration is given to the high Reynolds and low Mach number conditions typically present in counterflow-flame experiments, for which the flow is nearly inviscid and incompressible. It is shown that introduction of a density-weighted vorticity–streamfunction formulation effectively reduces the problem to one involving two jets of equal density, thereby removing the vortex-sheet character of the interface separating the two jet streams. Besides the geometric parameter $L/H$, the solution depends only on the shape of the velocity profiles in the feed streams and on the jet momentum-flux ratio. While conformal mapping can be used to determine the potential solution corresponding to uniform velocity profiles, numerical integration is required in general to compute rotational flows, including those arising with Poiseuille velocity profiles, with simplified solutions found in the limits $L/H\ll 1$ and $L/H\gg 1$. The results are used to quantify the near-stagnation-point region, of interest in counterflow-flame studies, including the local value of the strain rate as well as the curvature of the separating interface and the variations of the strain rate away from the stagnation point.

Type
Papers
Copyright
© 2017 Cambridge University Press 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Bergthorson, J. M., Sone, K., Mattner, T. W., Dimotakis, P. E., Goodwin, D. G. & Meiron, D. I. 2005 Impinging laminar jets at moderate Reynolds numbers and separation distances. Phys. Rev. E 72, 066307.CrossRefGoogle ScholarPubMed
Birkhoff, G. & Zarantonello, E. H. 1957 Jets, Wakes and Cavities. Academic.Google Scholar
Carpio, J., Liñán, A., Sánchez, A. L. & Williams, F. A. 2017 Aerodynamics of axisymmetric counterflowing jets. Combust. Flame 177, 137143.CrossRefGoogle Scholar
Cha, M. S. & Ronney, P. D. 2006 Propagation rates of nonpremixed edge flames. Combust. Flame 146, 312328.CrossRefGoogle Scholar
Denshchikov, V. A., Kondrat’ev, V. N. & Romashov, A. N. 1978 Interaction between two opposed jets. Fluid Dyn. 13, 924926.CrossRefGoogle Scholar
Denshchikov, V. A., Kondrat’Ev, V. N., Romashov, A. N. & Chubarov, V. M. 1983 Auto-oscillations of planar colliding jets. Fluid Dyn. 18, 460462.CrossRefGoogle Scholar
Gardon, R. & Akfirat, J. C. 1966 Heat transfer characteristics of impinging two-dimensional air jets. Trans. ASME J. Heat Transfer 88, 101107.CrossRefGoogle Scholar
Gupta, V., Safvi, S. A. & Mountziaris, T. J. 1996 Gas-phase decomposition kinetics in a wall-less environment using a counterflow jet reactor: design and feasibility studies. Ind. Engng Chem. Res. 35, 32483255.CrossRefGoogle Scholar
Gurevich, M. I. 1966 The Theory of Jets in an Ideal Fluid. Pergamon.Google Scholar
Hecht, F. 2012 New development in FreeFem++. J. Numer. Math. 20, 251265.CrossRefGoogle Scholar
Hosseinalipour, S. M. & Mujumdar, A. S. 1997a Flow and thermal characteristics of steady two dimensional confined laminar opposing jets: part I. Equal jets. Intl Commun. Heat Mass Transfer 24, 2738.CrossRefGoogle Scholar
Hosseinalipour, S. M. & Mujumdar, A. S. 1997b Flow and thermal characteristics of steady two dimensional confined laminar opposing jets: part II. Unequal jets. Intl Commun. Heat Mass Transfer 24, 3950.CrossRefGoogle Scholar
Kim, J., Libby, P. A. & Williams, F. A. 1993 On the displacement effects of laminar flames. Combust. Sci. Technol. 87, 125.CrossRefGoogle Scholar
Levey, H. C. 1960 The back effect of a wall on a jet. Z. Angew. Math. Phys. 11, 152157.CrossRefGoogle Scholar
Li, W. F., Huang, G. F., Tu, G. Y., Liu, H. F. & Wang, F. C. 2013 Experimental study of planar opposed jets with acoustic excitation. Phys. Fluids 25, 014108.CrossRefGoogle Scholar
Li, W. F., Yao, T. L., Liu, H. F. & Wang, F. C. 2011 Experimental investigation of flow regimes of axisymmetric and planar opposed jets. AIChE J. 57, 14341445.CrossRefGoogle Scholar
Liñán, A., Vera, M. & Sánchez, A. L. 2015 Ignition, liftoff, and extinction of gaseous diffusion flames. Annu. Rev. Fluid Mech. 47, 293314.CrossRefGoogle Scholar
Liu, J.-B. & Ronney, P. D. 1999 Premixed edge-flames in spatially-varying straining flows. Combust. Sci. Technol. 144, 2145.CrossRefGoogle Scholar
Martin, H. 1977 Heat and mass transfer between impinging gas jets and solid surfaces. Adv. Heat Transfer 13, 160.CrossRefGoogle Scholar
Milne-Thomson, L. M. 1968 Theoretical Hydrodynamics. Macmillan.CrossRefGoogle Scholar
Moreno-Boza, D., Coenen, W., Sevilla, A., Carpio, J. & Sánchez, A. L. 2016 Diffusion-flame flickering as a hydrodynamic global mode. J. Fluid Mech. 798, 9971014.CrossRefGoogle Scholar
Niemann, U., Seshadri, K. & Williams, F. A. 2015 Accuracies of laminar counterflow flame experiments. Combust. Flame 162, 15401549.CrossRefGoogle Scholar
Pawlowski, R. P., Salinger, A. G., Shadid, J. N. & Mountziaris, T. J. 2006 Bifurcation and stability analysis of laminar isothermal counterflowing jets. J. Fluid Mech. 551, 117139.CrossRefGoogle Scholar
Peters, N. 2000 Turbulent Combustion. Cambridge University Press.CrossRefGoogle Scholar
Phares, D. J., Smedley, G. T. & Flagan, R. C. 2000a The inviscid impingement of a jet with arbitrary velocity profile. Phys. Fluids 12, 20462055.CrossRefGoogle Scholar
Phares, D. J., Smedley, G. T. & Flagan, R. C. 2000b The wall shear stress produced by the normal impingement of a jet on a flat surface. J. Fluid Mech. 418, 351375.CrossRefGoogle Scholar
Renner, C. B. & Doyle, P. S. 2015 Stretching self-entangled DNA molecules in elongational fields. Soft Matt. 11, 31053114.CrossRefGoogle ScholarPubMed
Revuelta, A., Sánchez, A. L. & Liñán, A. 2002 The virtual origin as a first-order correction for the far-field description of laminar jets. Phys. Fluids 14, 18211824.CrossRefGoogle Scholar
Rubel, A. 1980 Computations of jet impingement on a flat surface. AIAA J. 18, 168175.CrossRefGoogle Scholar
Scribano, G. & Bisetti, F. 2016 Reynolds number and geometry effects in laminar axisymmetric isothermal counterflows. Phys. Fluids 28, 123605.CrossRefGoogle Scholar
Shay, M. L. & Ronney, P. D. 1998 Nonpremixed edge flames in spatially varying straining flows. Combust. Flame 112, 171180.CrossRefGoogle Scholar
Song, H. S., Wang, P., Boles, R. S., Matinyan, D., Prahanphap, H., Piotrowicz, J. & Ronney, P. D. 2017 Effects of mixture fraction on edge-flame propagation speeds. Proc. Combust. Inst. 36, 14031409.CrossRefGoogle Scholar
Strand, T. 1962 Inviscid-incompressible-flow theory of static two-dimensional solid jets in proximity to the ground. J. Aero. Sci. 29, 170173.Google Scholar
Tamir, A. 1994 Impinging Streams Reactors: Fundamentals and Applications. Elsevier.Google Scholar