Published online by Cambridge University Press: 28 September 2021
Vortex-induced vibration of a curved flexible cylinder placed in the test section of a recirculating water tunnel and fixed at both ends is studied experimentally. Both the concave and the convex orientations (with respect to the incoming flow direction) are considered. The cylinder was hung by its own weight with a dimensionless radius of curvature of $R/D=66$, and a low mass ratio of $m^{*} = 3.6$. A high-speed imaging technique was employed to record the oscillations of the cylinder in the cross-flow direction for a reduced velocity range of $U^{*} = 3.7 - 48.4$, corresponding to a Reynolds number range of $Re= 165 - 2146$. Mono- and multi-frequency responses as well as transition from low-mode-number to high-mode-number oscillations were observed. Regardless of the type of curvature, both odd and even mode shapes were excited in the cross-flow directions. However, the response of the system, in terms of the excited modes, amplitudes and frequencies of the oscillations, was observed to be sensitive to the direction of the curvature (i.e. concave vs convex), in particular at higher reduced velocities, where mode transition occurred. Hydrogen bubble flow visualization exhibited highly three-dimensional vortex shedding patterns in the wake of the cylinder, where there existed spatial and temporal evolution of the vortex shedding modes along the length of the cylinder. The time-varying intermittent vortex shedding in the wake of the cylinder was linked to the spanwise travelling wave behaviour of the vortex-induced vibration response. The observed spatially altering wake corresponded to the multi-modal excitation and mode transition along the length of the cylinder.