Hostname: page-component-745bb68f8f-b95js Total loading time: 0 Render date: 2025-01-28T10:22:49.977Z Has data issue: false hasContentIssue false

An experimental map of the internal structure of a vortex breakdown

Published online by Cambridge University Press:  12 April 2006

J. H. Faler
Affiliation:
Sibley School of Mechanical and Aerospace Engineering, Upson Hall, Cornell University, Ithaca, New York 14853 Present address: Corning Glass Works, Corning, New York.
S. Leibovich
Affiliation:
Sibley School of Mechanical and Aerospace Engineering, Upson Hall, Cornell University, Ithaca, New York 14853

Abstract

The flow field of an ‘axisymmetric’ vortex breakdown has been mapped using a laser-Doppler anemometer. The interior of the recirculation zone is dominated by energetic, non-axisymmetric, low frequency periodic fluctuations. Spectra for a number of points inside this zone, as well as time-averaged swirl and axial velocity profiles both inside and outside the recirculation zone, have been obtained. The time-averaged streamlines in the interior show an unexpected two-celled structure attributed to the action of the fluctuations. Although the present experiment deals with one particular breakdown, flow-visualization studies indicate that the case examined is typical of the ‘axisymmetric’ form of breakdown over a range of flow conditions.

Type
Research Article
Copyright
© 1978 Cambridge University Press

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Benjamin, T. B. 1962 Theory of the vortex breakdown phenomenon. J. Fluid Mech. 14, 593.Google Scholar
Benjamin, T. B. 1967 Some developments in the theory of vortex breakdown. J. Fluid Mech. 28, 65.Google Scholar
Bossel, H. H. 1969 Vortex breakdown flow field. Phys. Fluids 12, 498.Google Scholar
Burgers, J. M. 1948 A mathematical model illustrating the theory of turbulence. In Advances in Applied Mechanics, vol. 1, p. 198. Academic Press.
Cassidy, J. J. 1969 Experimental study and analysis of draft-tube surging. U.S. Dept. Interior, Bur. Reclamation REC-OCE-69-5, Rep. HYD-591.Google Scholar
Elle, B. J. 1960 On the breakdown at high incidences of the leading edge vortices on delta wings. J. Roy. Aero. Soc. 64, 491.Google Scholar
Faler, J. H. 1976 Some experiments in swirling flows: detailed velocity measurements of a vortex breakdown using a laser Doppler anemometer. Ph.D. dissertation, Cornell University. (Available as N.A.S.A. Contractor Rep. no. 135115.)
Faler, J. H. & Leibovich, S. 1977 Disrupted states of vortex flow and vortex breakdown. Phys. Fluids 20, 1385.Google Scholar
Garg, A. & Leibovich, S. 1978 Experiments on oscillations in vortex breakdown flows. In preparation.
Gartshore, I. S. 1962 Recent work in swirling incompressible flow. Nat. Res. Counc. Can. Aero. Rep. LR-343.Google Scholar
Grabowski, W. J. & Berger, S. A. 1976 Solutions of the Navier–Stokes equations for vortex breakdown. J. Fluid Mech. 75, 525.Google Scholar
Hall, M. G. 1967 A new approach to vortex breakdown. Proc. Heat Transfer Fluid Mech. Inst. pp. 319340. Stanford University Press.
Hall, M. G. 1972 Vortex breakdown. Ann. Rev. Fluid Mech. 4, 195.Google Scholar
Harvey, J. K. 1962 Some observations of the vortex breakdown phenomenon. J. Fluid Mech. 14, 585.Google Scholar
Hummel, D. 1965 Untersuchungen über das Aufplatzen der Wirbel an schlanken Deltaflügeln. Z. Flugwiss. 13, 158.Google Scholar
Jenkins, G. M. & Watts, D. G. 1968 Spectral Analysis and its Applications. Holden-Day.
Kirkpatrick, D. L. I. 1964 Experimental investigation of the breakdown of a vortex in a tube. Aero. Res. Counc. Current Paper no. 821.Google Scholar
Kopecky, R. M. & Torrance, K. E. 1973 Initiation and structure of axisymmetric eddies in a rotating stream. Computers & Fluids 1, 289.Google Scholar
Lambourne, N. C. & Bryer, D. W. 1961 The bursting of leading-edge vortices–some observations and discussion of the phenomenon. Aero. Res. Counc. R. & M. no. 3282.Google Scholar
Leibovich, S. 1968 Axially-symmetric eddies embedded in a rotational stream. J. Fluid Mech. 32, 529548.Google Scholar
Leibovich, S. 1970 Weakly nonlinear waves in rotating fluids. J. Fluid Mech. 42, 803.Google Scholar
Leibovich, S. 1978 The structure of vortex breakdown. Ann. Rev. Fluid Mech. 10 (to appear).Google Scholar
Leibovich, S. & Randall, J. D. 1973 Amplification and decay of long nonlinear waves. J. Fluid Mech. 53, 481.Google Scholar
Lessen, M., Singh, P. J. & Paillet, F. 1974 The stability of a trailing line vortex. Part 1. Inviscid theory. J. Fluid Mech. 63, 753763.Google Scholar
Ludwieg, H. 1961 Ergänzung zu der Arbeit: ‘Stabilität der Stromung in einem zylindrischen Ringraum.’. Z. Flugwiss. 9, 359.Google Scholar
Ludwieg, H. 1962 Zur Erklärung der Instabilität der über angestellten Deltaflugeln auftretenden freien Wirbelkerne. Z. Flugwiss. 10, 242.Google Scholar
Mager, A. 1972 Dissipation and breakdown of a wing-tip vortex. J. Fluid Mech. 55, 609.Google Scholar
Peckham, D. H. & Atkinson, S. A. 1957 Preliminary results of low speed wind tunnel tests on a Gothic wing of aspect ratio 10. Aero. Res. Counc. Current Paper no. 508.Google Scholar
Randall, J. D. & Leibovich, S. 1973 The critical state: a trapped wave model of vortex breakdown. J. Fluid Mech. 58, 495.Google Scholar
Sarpkaya, T. 1971a On stationary and travelling vortex breakdowns. J. Fluid Mech. 45, 545.Google Scholar
Sarpkaya, T. 1971b Vortex breakdown in swirling conical flows. A.I.A.A. J. 9, 1792.Google Scholar
Sarpkaya, T. 1974 Effect of the adverse pressure gradient on vortex breakdown. A.I.A.A. J. 12, 602.Google Scholar
Squire, H. B. 1962 Analysis of the vortex breakdown phenomenon. Part I. In Mizellaneen du Angewandten Mechanik, p. 360. Berlin: Akademie.