Article contents
Analysis of chemical effects on reflected-shock flow fields in combustible gas
Published online by Cambridge University Press: 20 April 2006
Abstract
This paper analyses effects of chemical reactions on reflected-shock flow fields in shock tubes. The method of linearized characteristics is applied to analyse gasdynamic disturbances due to chemical reactions. The analysis treats cases where combustible gas is highly diluted in inert gas, and assumes that flows are one-dimensional and that upstream flows in front of the reflected-shock waves are in the frozen state. The perturbed gasdynamic properties in the reflected-shock flow fields are shown to be expressible mainly in terms of a heat-release function for combustion process. In particular, simple relations are obtained between the heat-release function and the physical properties at the end wall of a shock tube. As numerical examples of the analysis, the present formulation is applied to calculate gasdynamic properties in the reflected-shock region in a H2–O2–Ar mixture. Procedures are demonstrated for calculation of the heat-release function by numerically integrating rate equations for chemical species. The analytical results are compared with rigorous solutions obtained numerically by use of a finite-difference method. It is shown that the formulation can afford exact solutions in cases where chemical behaviours are not essentially affected by gasdynamic behaviours. When the induction time of the combustion process is reduced to some extent owing to gasdynamic disturbances, some discrepancies appear between analytical results and rigorous solutions. An estimate is made of the induction-time reduction, and a condition is written down for applicability of the analysis.
- Type
- Research Article
- Information
- Copyright
- © 1985 Cambridge University Press
References
- 4
- Cited by