Hostname: page-component-cd9895bd7-mkpzs Total loading time: 0 Render date: 2024-12-26T20:59:46.841Z Has data issue: false hasContentIssue false

Analysis of the flow field around a rudder in the wake of a simplified marine propeller

Published online by Cambridge University Press:  09 February 2017

Roberto Muscari*
Affiliation:
CNR-INSEAN, via di Vallerano 139, 00128 Roma, Italy
Giulio Dubbioso
Affiliation:
CNR-INSEAN, via di Vallerano 139, 00128 Roma, Italy
Andrea Di Mascio
Affiliation:
CNR-IAC, via dei Taurini 19, 00185 Roma, Italy
*
Email address for correspondence: roberto.muscari@cnr.it

Abstract

The vortex–body interaction problem, which characterizes the flow field of a rudder placed downstream of a single-blade marine rotor, is investigated by numerical simulations. The particular topology of the propeller wake, consisting of a helicoidal vortex detached from the blade tips (tip vortex) and a longitudinal, streamwise oriented vortex originating at the hub (hub vortex), embraces two representative mechanisms of vortex–body collisions: the tip vortices impact almost orthogonally to the mean plane, whereas the hub vortex travels in the mean plane of the wing (rudder), perpendicularly to its leading edge. The two vortices evolve independently only during the approaching and collision phases. The passage along the body is instead characterized by strong interaction with the boundary layer on the rudder and is followed by reconnection and merging in the middle and far wake. The features of the wake were investigated by the $\unicode[STIX]{x1D706}_{2}$ -criterion (Jeong & Hussain, J. Fluid Mech., vol. 285, 1995, pp. 69–94) and typical flow variables (pressure, velocity and vorticity) of the instantaneous flow field; wall pressure spectra were analysed and related to the tip and hub vortices evolution, revealing a non-obvious behaviour of the loading on the rudder that can be related to undesired unsteady loads.

Type
Papers
Copyright
© 2017 Cambridge University Press 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Carlton, J. 2012 Marine Propellers and Propulsion, 3rd edn. Butterworth–Heinemann.Google Scholar
Coton, F. N., Green, R. B. & Early, J. M. 2006 On the three dimensional nature of the orthogonal blade–vortex interaction. Exp. Fluids 41, 749761.Google Scholar
Coton, F. N., Marshall, J. S., Galbraith, R. A. McD. & Green, R. B. 2004 Helicopter tail rotor orthogonal blade vortex interaction. Prog. Aerosp. Sci. 40, 453486.Google Scholar
Di Mascio, A., Muscari, R. & Dubbioso, G. 2014 On the wake dynamics of a propeller operating in drift. J. Fluid Mech. 754, 263307.Google Scholar
Felli, M., Camussi, R. & Guj, G. 2009 Experimental analysis of the flow field around a propeller-rudder configuration. Exp. Fluids 46, 147164.Google Scholar
Felli, M. & Falchi, M. 2011 Propeller tip and hub vortex dynamics in the interaction with a rudder. Exp. Fluids 51, 13851402.CrossRefGoogle Scholar
Filippone, A. & Afgan, I. 2008 Orthogonal blade–vortex interaction on a helicopter tail rotor. AIAA J. 46, 14761488.CrossRefGoogle Scholar
Garmann, D. J. & Visbal, M. R. 2015 Interactions of a streamwise-oriented vortex with a finite wing. J. Fluid Mech. 767, 782810.CrossRefGoogle Scholar
Gordnier, R. E. & Visbal, M. R. 1999 Numerical simulation of the impingement of a streamwise vortex on a plate. Intl J. Comput. Fluid Dyn. 12 (1), 4966.CrossRefGoogle Scholar
Jeong, J. & Hussain, F. 1995 On the identification of a vortex. J. Fluid Mech. 285, 6994.Google Scholar
Kim, J. M. & Komerath, N. M. 1995 Summary of the interaction of a rotor wake with a circular cylinder. AIAA J. 33, 470478.CrossRefGoogle Scholar
Krishnamoorthy, S., Gossler, A. A. & Marshall, J. S. 1999 Normal vortex interaction with a circular cylinder. AIAA J. 37, 5057.Google Scholar
Krishnamoorthy, S. & Marshall, J. S. 1998 Three dimensional blade–vortex interaction in the strong vortex regime. Phys. Fluids 10 (11), 28282845.CrossRefGoogle Scholar
Liepmann, D. & Gharib, M. 1992 The role of streamwise vorticity in the near field entrainment of a round jet. J. Fluid Mech. 245, 643668.Google Scholar
Liu, X. & Marshall, J. S. 2004 Blade penetration into a vortex core with and without axial core flow. J. Fluid Mech. 519, 81103.Google Scholar
Marshall, J. S. 1994 Vortex cutting by a blade. Part 1: general theory and a simple solution. AIAA J. 32, 11451150.Google Scholar
Marshall, J. S. 2002 Models of secondary vorticity evolution during normal vortex–cylinder interaction. AIAA J. 40, 170172.Google Scholar
Marshall, J. S. & Grant, J. R. 1996 Penetration of a blade into a vortex core: vorticity response and unsteady blade forces. J. Fluid Mech. 306, 83109.Google Scholar
Marshall, J. S. & Krishnamoorthy, S. 1997 On the instantaneous cutting of a columnar vortex with non-zero axial flow. J. Fluid Mech. 351, 4174.Google Scholar
Marshall, J. S. & Yalamanchili, R. 1994 Vortex cutting by a blade. Part 2: computations of vortex response. AIAA J. 32, 14281436.Google Scholar
Melander, M. V. & Hussain, F.1988 Cut-and-connect of two antiparallel vortex tubes. Tech. Rep. CTR Report-S88, 257. Stanford University.Google Scholar
Molland, A. & Turnock, P. H. 2006 Marine Rudders and Control Surfaces, 1st edn. Butterworth–Heinemann.Google Scholar
Muscari, R., Di Mascio, A. & Verzicco, R. 2013 Modelling of vortex dynamics in the wake of a marine propeller. Comput. Fluids 73, 6579.Google Scholar
Roache, P. J. 1997 Quantification of uncertainty in computational fluid dynamics. Annu. Rev. Fluid Mech. 29, 123160.Google Scholar
Rockwell, D. 1998 Vortex–body interactions. Annu. Rev. Fluid Mech. 11, 95121.Google Scholar
Veldhuis, L. L. M.2005 Propeller wing aerodynamic interference. PhD thesis, Univ. Delft, Netherlands.Google Scholar
Zanotti, A., Ermacora, M., Campanardi, G. & Gibertini, G. 2014 On the three dimensional nature of the orthogonal blade–vortex interaction. Exp. Fluids 55, 18111824.CrossRefGoogle Scholar