Hostname: page-component-745bb68f8f-5r2nc Total loading time: 0 Render date: 2025-01-08T13:49:53.132Z Has data issue: false hasContentIssue false

Anisotropic modelling of thermal convection in multilayered porous media

Published online by Cambridge University Press:  20 April 2006

Robert Mckibbin
Affiliation:
Department of Theoretical and Applied Mechanics, University of Auckland, New Zealand
Peder A. Tyvand
Affiliation:
Department of Mechanics, University of Oslo, Norway

Abstract

The principle of large-scale anisotropy due to small-scale layering is applied to thermal convection. The motion takes place in a bounded porous medium heated from below. The medium is periodically layered with respect to permeability and thermal conductivity. The onset of convection as well as slightly supercritical convection are investigated. Anisotropic modelling proves useful even for small numbers of layers as long as the motion is of ‘large-scale convection’ type (Masuoka et al. 1978). The modelling always fails for motion of ‘local convection’ type.

Type
Research Article
Copyright
© 1982 Cambridge University Press

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Bear, J. 1972 Dynamics of Fluids in Porous Media. Elsevier.
Brekhovskikh, L. M. 1960 Waves in Layered Media. Academic.
Castinel, G. & Combarnous, M. 1974 Critère d'apparition de la convection naturelle dans une couche poreuse anisotrope horizontale. C. r. hebd. Séanc. Acad. Sci. Paris B 278, 701704.Google Scholar
Cheng, P. 1978 Heat transfer in geothermal systems. Adv. Heat Transfer 14, 1105.Google Scholar
Combarnous, M. A. & Bories, S. A. 1975 Hydrothermal convection in saturated porous media. Adv. Hydrosci. 10, 231307.Google Scholar
Donaldson, I. G. 1962 Temperature gradients in the upper layers of the earth's crust due to convective water flows. J. Geophys. Res. 67, 34493459.Google Scholar
Epherre, J. F. 1975 Critère d'apparition de la convection naturelle dans une couche poreuse anisotrope. Rev. Gén. Thermique 168, 949950.Google Scholar
Gershuni, G. Z. & Zhukhovitskii, E. M. 1976 Convective stability of incompressible fluids. Jerusalem: Keter. (Originally publ. in Russian, 1972, Nauka.)
Green, T. & Freehill, R. L. 1969 Marginal stability in inhomogeneous porous media. J. Appl. Phys. 40, 17591762.Google Scholar
Kvernvold, O. & Tyvand, P. A. 1979 Nonlinear thermal convection in anisotropic porous media. J. Fluid Mech. 90, 609624.Google Scholar
Marcus, H. & Evenson, D. E. 1961 Directional permeability in anisotropic porous media. Water Resources Center Contrib. no. 31, Hydrology Laboratory, University of California, Berkeley.Google Scholar
Masuoka, T., Katsuhara, T., Nakazono, Y. & Isozaki, S. 1978 Onset of convection and flow patterns in a porous layer of two different media. Heat Transfer-Japanese Res. 7, 3952.Google Scholar
Mckibbin, R. & O'Sullivan, M. J. 1980 Onset of convection in a layered porous medium heated from below. J. Fluid Mech. 96, 375393.Google Scholar
Mckibbin, R. & O'Sullivan, M. J. 1981 Heat transfer in a layered porous medium heated from below. J. Fluid Mech. 111, 141173.Google Scholar
Moranville, M. B., Kessler, D. P. & Greenkorn, R. A. 1977a Directional dispersion coefficients in anisotropic porous media. Ind. Engng Chem. Fund. 16, 327332.Google Scholar
Moranville, M. B., Kessler, D. P. & Greenkorn, R. A. 1977b Dispersion in layered porous media. A.I.Ch.E. J. 23, 786794.Google Scholar
Ribando, R. & Torrance, K. E. 1976 Natural convection in a porous medium: effects of confinement, variable permeability, and thermal boundary conditions. Trans. A.S.M.E. C, J. Heat Transfer 98, 4248.Google Scholar
Tyvand, P. A. 1980 Approximate formulae for the dispersion coefficients of layered porous media. A.I.Ch.E. J. 26, 513517.Google Scholar
Wooding, R. A. 1976 Influence of anisotropy and variable viscosity upon convection in a heated saturated porous layer. New Zealand D.S.I.R. Tech. Rep. no. 55.Google Scholar
Zebib, A. & Kassoy, D. R. 1977 Onset of natural convection in a box of water-saturated porous media with large temperature variation. Phys. Fluids 20, 49.Google Scholar