Hostname: page-component-745bb68f8f-kw2vx Total loading time: 0 Render date: 2025-01-28T03:27:57.326Z Has data issue: false hasContentIssue false

The assembly of freely moving rigid fibres measures the flow velocity gradient tensor

Published online by Cambridge University Press:  11 May 2020

Mattia Cavaiola
Affiliation:
Department of Civil, Chemical and Environmental Engineering (DICCA), University of Genova, Via Montallegro 1, 16145, Genova, Italy INFN, Genova Section, Via Montallegro 1, 16145, Genova, Italy
Stefano Olivieri
Affiliation:
Department of Civil, Chemical and Environmental Engineering (DICCA), University of Genova, Via Montallegro 1, 16145, Genova, Italy INFN, Genova Section, Via Montallegro 1, 16145, Genova, Italy
Andrea Mazzino*
Affiliation:
Department of Civil, Chemical and Environmental Engineering (DICCA), University of Genova, Via Montallegro 1, 16145, Genova, Italy INFN, Genova Section, Via Montallegro 1, 16145, Genova, Italy
*
Email address for correspondence: andrea.mazzino@unige.it

Abstract

The motion of an assembly of rigid fibres is investigated for different classes of closed streamline flows, steady or time dependent, two-dimensional or three-dimensional. In our study, the dynamics of the fibre assembly is fully coupled to the flow field by means of a state of the art immersed boundary method. We show that, for sufficiently small Stokes times of the assembly, the whole flow gradient tensor can be accurately reconstructed by simply tracking the fibre assembly and measuring suitable fibre velocity differences evaluated at the fibre ends. Our results strongly suggest the possibility of using rigid fibres (or assemblies of them) to perform multi-point flow measures, either in laboratory or in field: future experiments are therefore mandatory to inquire the feasibility of a new ‘fibre tracking velocimetry’ technique.

Type
JFM Papers
Copyright
© The Author(s), 2020. Published by Cambridge University Press

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Adrian, R. J. 1991 Particle-imaging techniques for experimental fluid mechanics. Annu. Rev. Fluid Mech. 23 (1), 261304.CrossRefGoogle Scholar
Allende, S., Henry, C. & Bec, J. 2018 Stretching and buckling of small elastic fibers in turbulence. Phys. Rev. Lett. 121, 154501.CrossRefGoogle ScholarPubMed
Bagheri, S., Mazzino, A. & Bottaro, A. 2012 Spontaneous symmetry breaking of a hinged flapping filament generates lift. Phys. Rev. Lett. 109, 154502.CrossRefGoogle ScholarPubMed
Bakhuis, D., Mathai, V., Verschoof, R. A., Ezeta, R., Lohse, D., Huisman, S. G. & Sun, C. 2019 Statistics of rigid fibers in strongly sheared turbulence. Phys. Rev. F 4, 072301.Google Scholar
Banaei, A. A., Rosti, M. E. & Brandt, L. 2020 Numerical study of filament suspensions at finite inertia. J. Fluid Mech. 882, A5.CrossRefGoogle Scholar
Bec, J., Biferale, L., Boffetta, G., Celani, A., Cencini, M., Lanotte, A., Musacchio, S. & Toschi, F. 2006 Acceleration statistics of heavy particles in turbulence. J. Fluid Mech. 550, 349358.CrossRefGoogle Scholar
Bec, J., Biferale, L., Cencini, M., Lanotte, A., Musacchio, S. & Toschi, F. 2007 Heavy particle concentration in turbulence at dissipative and inertial scales. Phys. Rev. Lett. 98, 084502.CrossRefGoogle ScholarPubMed
Biferale, L., Crisanti, A., Vergassola, M. & Vulpiani, A. 1995 Eddy diffusivities in scalar transport. Phys. Fluids 7 (11), 27252734.CrossRefGoogle Scholar
Bounoua, S., Bouchet, G. & Verhille, G. 2018 Tumbling of inertial fibers in turbulence. Phys. Rev. Lett. 121, 124502.CrossRefGoogle ScholarPubMed
Brizzolara, S.2019 Fiber tracking velocimetry. Master thesis, University of Genova.Google Scholar
Butler, J. E. & Snook, B. 2018 Microstructural dynamics and rheology of suspensions of rigid fibers. Annu. Rev. Fluid Mech. 50 (1), 299318.CrossRefGoogle Scholar
Cartwright, J. H. E., Feudel, U., Károlyi, G., de Moura, A., Piro, O. & Tél, T. 2010 Dynamics of Finite-Size Particles in Chaotic Fluid Flows. Springer.CrossRefGoogle Scholar
Castiglione, P., Crisanti, A., Mazzino, A., Vergassola, M. & Vulpiani, A. 1998 Resonant enhanced diffusion in time-dependent flow. J. Phys. A: Math. Gen. 31 (35), 71977210.CrossRefGoogle Scholar
Chouippe, A. & Uhlmann, M. 2015 Forcing homogeneous turbulence in direct numerical simulation of particulate flow with interface resolution and gravity. Phys. Fluids 27 (12), 123301.CrossRefGoogle Scholar
Cox, R. G. 1970 The motion of long slender bodies in a viscous fluid Part 1. General theory. J. Fluid Mech. 44 (4), 791810.CrossRefGoogle Scholar
Do-Quang, M., Amberg, G., Brethouwer, G. & Johansson, A. V. 2014 Simulation of finite-size fibers in turbulent channel flows. Phys. Rev. E 89, 013006.Google ScholarPubMed
Dombre, T., Frisch, U., Greene, J. M., Hénon, M., Mehr, A. & Soward, A. M. 1986 Chaotic streamlines in the ABC flows. J. Fluid Mech. 167, 353391.CrossRefGoogle Scholar
Eaton, J. K. & Fessler, J. R. 1994 Preferential concentration of particles by turbulence. Intl J. Multiphase Flow 20, 169209.CrossRefGoogle Scholar
Gustavsson, K., Sheikh, M. Z., Lopez, D., Naso, A., Pumir, A. & Mehlig, B. 2019 Effect of fluid inertia on the orientation of a small prolate spheroid settling in turbulence. New J. Phys. 21 (8), 083008.Google Scholar
Hejazi, B., Krellenstein, M. & Voth, G. A. 2019 Using deformable particles for single-particle measurements of velocity gradient tensors. Exp. Fluids 60 (10), 153.CrossRefGoogle Scholar
Hoyer, K., Holzner, M., Lüthi, B., Guala, M., Liberzon, A. & Kinzelbach, W. 2005 3D scanning particle tracking velocimetry. Exp. Fluids 39 (5), 923.CrossRefGoogle Scholar
Huang, W.-X., Shin, S. J. & Sung, H. J. 2007 Simulation of flexible filaments in a uniform flow by the immersed boundary method. J. Comput. Phys. 226 (2), 22062228.CrossRefGoogle Scholar
Jeffery, G. B. 1922 The motion of ellipsoidal particles immersed in a viscous fluid. Proc. R. Soc. Lond. A 102 (715), 161179.Google Scholar
Krug, D., Holzner, M., Lüthi, B., Wolf, M., Tsinober, A. & Kinzelbach, W. 2014 A combined scanning PTV/LIF technique to simultaneously measure the full velocity gradient tensor and the 3D density field. Meas. Sci. Technol. 25 (6), 065301.CrossRefGoogle Scholar
Kuperman, S., Sabban, L. & van Hout, R. 2019 Inertial effects on the dynamics of rigid heavy fibers in isotropic turbulence. Phys. Rev. F 4, 064301.Google Scholar
Lācis, U., Brosse, N., Ingremeau, F., Mazzino, A., Lundell, F., Kellay, H. & Bagheri, S. 2014 Passive appendages generate drift through symmetry breaking. Nat. Commun. 5, 5310.CrossRefGoogle ScholarPubMed
Lācis, U., Olivieri, S., Mazzino, A. & Bagheri, S. 2017 Passive control of a falling sphere by elliptic-shaped appendages. Phys. Rev. F 2, 033901.Google Scholar
Lawson, J. M. & Dawson, J. R. 2014 A scanning PIV method for fine-scale turbulence measurements. Exp. Fluids 55 (12), 1857.CrossRefGoogle Scholar
Marchioli, C., Fantoni, M. & Soldati, A. 2010 Orientation, distribution, and deposition of elongated, inertial fibers in turbulent channel flow. Phys. Fluids 22 (3), 033301.CrossRefGoogle Scholar
Marchioli, C., Zhao, L. & Andersson, H. I. 2016 On the relative rotational motion between rigid fibers and fluid in turbulent channel flow. Phys. Fluids 28 (1), 013301.CrossRefGoogle Scholar
Ni, R., Kramel, S., Ouellette, N. T. & Voth, G. A. 2015 Measurements of the coupling between the tumbling of rods and the velocity gradient tensor in turbulence. J. Fluid Mech. 766, 202225.CrossRefGoogle Scholar
Parsa, S., Calzavarini, E., Toschi, F. & Voth, G. A. 2012 Rotation rate of rods in turbulent fluid flow. Phys. Rev. Lett. 109, 134501.CrossRefGoogle ScholarPubMed
Quennouz, N., Shelley, M., Du Roure, O. & Lindner, A. 2015 Transport and buckling dynamics of an elastic fibre in a viscous cellular flow. J. Fluid Mech. 769, 387402.CrossRefGoogle Scholar
Roma, A. M., Peskin, C. S. & Berger, M. J. 1999 An adaptive version of the immersed boundary method. J. Comput. Phys. 153 (2), 509534.CrossRefGoogle Scholar
Rosti, M. E., Banaei, A. A., Brandt, L. & Mazzino, A. 2018a Flexible fiber reveals the two-point statistical properties of turbulence. Phys. Rev. Lett. 121, 044501.CrossRefGoogle Scholar
Rosti, M. E. & Brandt, L. 2017 Numerical simulation of turbulent channel flow over a viscous hyper-elastic wall. J. Fluid Mech. 830, 708735.CrossRefGoogle Scholar
Rosti, M. E., Izbassarov, D., Tammisola, O., Hormozi, S. & Brandt, L. 2018b Turbulent channel flow of an elastoviscoplastic fluid. J. Fluid Mech. 853, 488514.CrossRefGoogle Scholar
Rosti, M. E., Olivieri, S., Banaei, A. A., Brandt, L. & Mazzino, A. 2020 Flowing fibers as a proxy of turbulence statistics. Meccanica 55, 357370.CrossRefGoogle Scholar
du Roure, O., Lindner, A., Nazockdast, E. N. & Shelley, M. J. 2019 Dynamics of flexible fibers in viscous flows and fluids. Annu. Rev. Fluid Mech. 51 (1), 539572.CrossRefGoogle Scholar
Sabban, L., Cohen, A. & van Hout, R. 2017 Temporally resolved measurements of heavy, rigid fibre translation and rotation in nearly homogeneous isotropic turbulence. J. Fluid Mech. 814, 4268.CrossRefGoogle Scholar
Schanz, D., Gesemann, S. & Schröder, A. 2016 Shake-the-box: Lagrangian particle tracking at high particle image densities. Exp. Fluids 57 (5), 70.CrossRefGoogle Scholar
Shahmardi, A., Zade, S., Ardekani, M. N., Poole, R. J., Lundell, F., Rosti, M. E. & Brandt, L. 2019 Turbulent duct flow with polymers. J. Fluid Mech. 859, 10571083.CrossRefGoogle Scholar
Shelley, M. J. & Zhang, J. 2011 Flapping and bending bodies interacting with fluid flows. Annu. Rev. Fluid Mech. 43, 449465.CrossRefGoogle Scholar
Tornberg, A.-K. & Shelley, M. J. 2004 Simulating the dynamics and interactions of flexible fibers in Stokes flows. J. Comput. Phys. 196 (1), 840.CrossRefGoogle Scholar
Voth, G. A. & Soldati, A. 2017 Anisotropic particles in turbulence. Annu. Rev. Fluid Mech. 49 (1), 249276.CrossRefGoogle Scholar
Wandersman, E., Quennouz, N., Fermigier, M., Lindner, A. & du Roure, O. 2010 Buckled in translation. Soft Matt. 6, 57155719.CrossRefGoogle Scholar
Young, Y. N. & Shelley, M. J. 2007 Stretch-coil transition and transport of fibers in cellular flows. Phys. Rev. Lett. 99, 058303.CrossRefGoogle ScholarPubMed