Article contents
Asymptotic theory of high-aspect-ratio arched wings in steady incompressible flow
Published online by Cambridge University Press: 26 April 2006
Abstract
Asymptotic theory of high-aspect-ratio wings in steady incompressible flow is extended to a case where the wing forms either an open or closed circular arc. The generalization is based on an integral formulation of the problem, which resembles the one used by Guermond (1990) for a plane curved wing. A second-order approximation is obtained for the load distribution on two model wings, one resembling that of a gliding parachute, and the other resembling a short duct.
- Type
- Research Article
- Information
- Copyright
- © 1995 Cambridge University Press
References
Ashley, H. & Landahi, M.
1965
Aerodynamics of Wings and Bodies, pp.
23,
81–98.
135–136.
Addison Wesley.
Baskin, V. E., Vildgrube, L. S., Vozhadayev, Y. S. & Maykapuar, G. I.
1976
Theory of lifting airscrew.
NASA TT-F-823, pp.
312–314.
Belotserkovskii, S. M.
1967
The Theory of Thin Wings in Subsonic Flow, pp.
4,
5,
50,
133.
Plenum.
Friderichs, K. O.
1966
Special Topics in Fluid Dynamics, pp.
111–119.
Gordon and Breach.
Guermond, J. L.
1987
A new systematic formula for the asymptotic expansion of singular integrals.
Z. Angew Math. phys.
38,
717–729.Google Scholar
Guermond, J. L.
1990
generalized lifting-line theory for curved and swept wings.
J. fluid Mech.
211,
497–513.Google Scholar
Iosilevskii, Y. A. & Losilevskii, G.
1994
Mathematical foundations of an unsteady aerodynamic theory of rotary wings in axial flight. Part 2. An infinitesimally thin blade-wake approximation. TAE Rep. 725,
Technion. pp.
5,
27,
30,
40,
52–55,
61.
Kida, T. & Miyai, Y.
1978
An alternative treatment of lifting-line theory as a perturbation problem.
Z. Angew. Math. Phys.
38,
717–729.Google Scholar
Prandtl, L., Wiesselsberger, C. & Betz, A.
1921
Ergebnisse der Aerdynamichen Versuchsanstalt Zu Göttingen.
München und Berlin:
Lieferung and Oldenbourg.
Söhngen, H.
1939
Die Losungen der Integralgleihung und deren Anwendung in der Tragflugeltheorie.
Math. Z.
45,
245–264.Google Scholar
Thurber, J. K.
1965
An asymptotic method for determining the lift distribution of a swept-back wings of finite span.
Commun. Pure Appl. Maths
18,
733–756.Google Scholar
Dyke, Van M.
1975
Perturbation Methods in Fluid Mechanics, pp.
167–176.
The Parabolic Press.
- 2
- Cited by