Hostname: page-component-745bb68f8f-grxwn Total loading time: 0 Render date: 2025-01-13T14:05:03.773Z Has data issue: false hasContentIssue false

Axisymmetric convection in a cylinder

Published online by Cambridge University Press:  29 March 2006

C. A. Jones
Affiliation:
Department of Applied Mathematics and Theoretical Physics, University of Cambridge
D. R. Moore
Affiliation:
Department of Applied Mathematics and Theoretical Physics, University of Cambridge
N. O. Weiss
Affiliation:
Department of Applied Mathematics and Theoretical Physics, University of Cambridge

Abstract

In three-dimensional Bénard convection regions of rising and sinking fluid are dissimilar. This geometrical effect is studied for axisymmetric convection in a Boussinesq fluid contained in a cylindrical cell with free boundaries. Near the critical Rayleigh number Rc the solution is obtained from a perturbation expansion, valid only if both the Reynolds number and the Péclet number are small. For values of the Nusselt number N ≤ 2 accurate solutions are provided by an expansion in a finite number of vertical modes. For Prandtl numbers p < 1 the form of the solution changes at large Reynolds number and becomes independent of p; in the limit p → 0 there is an effective critical Rayleigh number R* = 1.32Rc, which can also be derived by a perturbation procedure, and the Nusselt number is a function of the Rayleigh number only. Numerical experiments yield solutions for Rayleigh numbers R ≤ 100Rc and p ≥ 0.01. The results are similar to those for two-dimensional rolls and for R ≥ 5Rc the Nusselt number shows only a weak dependence on p. For p > 1 there is a viscous regime with N ≈ 2(R/Rc)1/3; when R/Rc [gsim ] p3/2, N increases more rapidly, approximately as R0.4. At high Rayleigh numbers a large isothermal region develops, in which the ratio of vorticity to distance from the axis is nearly constant.

Type
Research Article
Copyright
© 1976 Cambridge University Press

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Batchelor, G. K. 1956 J. Fluid Mech. 1, 177.
Busse, F. H. 1972 J. Fluid Mech. 52, 97.
Chandrasekhar, S. 1961 Hydrodynamic and Hydromagnetic Stability. Oxford: Clarendon Press.
Charlson, G. S. & Sani, R. L. 1970 Int. J. Heat Mass Transfer, 13, 1479.
Charlson, G. S. & Sani, R. L. 1971 Int. J. Heat Mass Transfer, 14, 2157.
Clever, R. M. & Busse, F. H. 1974 J. Fluid Mech. 65, 625.
Gough, D. O., Spiegel, E. A. & Toomre, J. 1975 J. Fluid Mech. 68, 695.
Joseph, D. D. 1971 J. Fluid Mech. 47, 257.
Koschmieder, E. L. 1966 Beitr. Phys. Atmos. 39, 1.
Koschmieder, E. L. 1974 Adv. Chem. Phys. 26, 177.
Krishnamurti, R. 1973 J. Fluid Mech. 60, 285.
Liang, S. F., Vidal, A. & Acrivos, A. 1969 J. Fluid Mech. 36, 239.
Mckenzie, D. P., Roberts, J. M. & Weiss, N. O. 1974 J. Fluid Mech. 62, 465.
Malkus, W. V. R. 1954 Proc. Roy. Soc. A, 225, 196.
Malkus, W. V. R. & Veronis, G. 1958 J. Fluid Mech. 4, 225.
Moore, D. R., Peckover, R. S. & Weiss, N. O. 1973 Comp. Phys. Comm. 6, 198.
Moore, D. R. & Proctor, M. R. E. 1976 In preparation.
Moore, D. R. & Weiss, N. O. 1973 J. Fluid Mech. 58, 289.
Orszag, S. A. & Israeli, M. 1974 Ann. Rev. Fluid Mech. 6, 281.
Pellew, A. & Southwell, R. V. 1940 Proc. Roy. Soc. A, 176, 312.
Rayleigh, Lord 1916 Phil. Mag. 32 (6), 529.
Roberts, K. V. & Weiss, N. O. 1966 Math. Comp. 20, 272.
Schlüter, A., Lortz, D. & Busse, F. 1965 J. Fluid Mech. 23, 129.
Spiegel, E. A. 1971a Comm. Astrophys. Space Phys. 3, 53.
Spiegel, E. A. 1971b Ann. Rev. Astron. Astrophys. 9, 323.
Straus, J. M. 1972 J. Fluid Mech. 56, 353.
Threlfall, D. C. 1975 J. Fluid Mech. 67, 17.
Weir, A. D. 1976 J. Fluid Mech. (in press).
Weiss, N. O. 1966 Proc. Roy. Soc. A, 293, 310.
Williams, G. P. 1967 J. Atmos. Sci. 24, 144.
Willis, G. E. & Deardorff, J. W. 1970 J. Fluid Mech. 44, 661.