Hostname: page-component-745bb68f8f-f46jp Total loading time: 0 Render date: 2025-01-13T09:50:12.819Z Has data issue: false hasContentIssue false

Axisymmetric vortex breakdown Part 1. Confined swirling flow

Published online by Cambridge University Press:  26 April 2006

J. M. Lopez
Affiliation:
Aeronautical Research Laboratory, P.O. Box 4331, Melbourne, Vic., 3001. Australia

Abstract

A comparison between the experimental visualization and numerical simulations of the occurrence of vortex breakdown in laminar swirling flows produced by a rotating endwall is presented. The experimental visualizations of Escudier (1984) were the first to detect the presence of multiple recirculation zones and the numerical model presented here, consisting of a numerical solution of the unsteady axisymmetric Navier-Stokes equations, faithfully reproduces these phenomena and all other observed characteristics of the flow. Further, the numerical calculations elucidate the onset of oscillatory flow, an aspect of the flow that was not clearly resolved by the flow visualization experiments. Part 2 of the paper examines the underlying physics of these vortex flows.

Type
Research Article
Copyright
© 1990 Cambridge University Press

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Arakawa, A.: 1966 Computational design for long-term numerical integration of the equations of fluid motion: Two-dimensional incompressible flow. Part 1. J. Comput. Phys. 1, 119143.Google Scholar
Benjamin, T. B.: 1962 Theory of the vortex breakdown phenomenon. J. Fluid Mech. 14, 593629.Google Scholar
Brown, G. L. & Lopez, J. M., 1988 Axisymmetric vortex breakdown. Part 2. Physical mechanisms. ARL Aero. Rep. 174 AR-004–573.Google Scholar
Brown, G. L. & Lopez, J. M., 1990 Axisymmetric vortex breakdown. Part 2. Physical mechanisms. J. Fluid Mech. 221, 553576.Google Scholar
Dijkstra, D. & Van Heijst, G. J. F.: 1983 The flow between two finite rotating disks enclosed by a cylinder. J. Fluid Mech. 128, 123154.Google Scholar
Escudier, M. P.: 1984 Observations of the flow produced in a cylindrical container by a rotating endwall. Expts Fluids 2, 189196.Google Scholar
Escudier, M. P.: 1986 Vortex breakdown in technology and nature; and Vortex breakdown theories. Von Karman Institute for Fluid Dynamics Lecture Series Programme. 10. Introduction to Vortex Dynamics. May 1986, Lectures 9 and 10.Google Scholar
Escudier, M. P.: 1988 Vortex breakdown: observations and explanations. Prog. Aerospace Sci. 25, 189229.Google Scholar
Escudier, M. P. & Keller, J. J., 1983 Vortex breakdown: A two-stage transition. AGARD CP-342.Google Scholar
Escudier, M. P. & Zehnder, N., 1982 Vortex flow regimes. J. Fluid Mech. 115, 105121.Google Scholar
Faler, J. H. & Leibovich, S., 1978 An experimental map of the internal structure of a vortex breakdown. J. Fluid Mech. 86, 313335.Google Scholar
Grabowski, W. J. & Berger, S. A., 1976 Solutions of the Navier-Stokes equations for vortex breakdown. J. Fluid Mech. 75, 525544.Google Scholar
Hall, M. G.: 1972 Vortex breakdown. Ann. Rev. Fluid Mech. 4, 195218.Google Scholar
Harvey, J. K.: 1960 Analysis of the ‘vortex breakdown’ phenomenon, Part 2. Imperial College, Aero. Dept. Rep. 103.Google Scholar
Leibovich, S.: 1978 The structure of vortex breakdown. Ann. Rev. Fluid Mech. 10, 221246.Google Scholar
Leibovich, S.: 1984 Vortex stability and breakdown: survey and extension. AIAA J. 22, 11921206.Google Scholar
Lopez, J. M.: 1988 Axisymmetric vortex breakdown. Part I: Confined swirling flow. ARL Aero. Rep. 173 AR-004–572.Google Scholar
Lopez, J. M.: 1989 Axisymmetric vortex breakdown in an enclosed cylinder flow. In 11th Intl Conf. on Numerical Methods in Fluid Dynamics (ed. D. L. Dwoyer, M. Y. Hussaini & R. G. Voigt). Lecture Notes in Physics, vol. 323, pp. 384388. Springer.
Lugt, H. J. & Abboud, M., 1987 Axisymmetric vortex breakdown with and without temperature effects in a container with a rotating lid. J. Fluid Mech. 179, 179200.Google Scholar
Lugt, H. J. & Haussling, H. J., 1973 Development of flow circulation in a rotating tank. Acta Mech. 18, 255272.Google Scholar
Lugt, H. J. & Haussling, H. J., 1982 Axisymmetric vortex breakdown in rotating fluid within a container. Trans. ASME E: J. Appl. Mech. 49, 921923.Google Scholar
Miller, M. J. & Pearce, R. P., 1974 A three-dimensional primitive equation model of cumulonimbus convection. Q. J. R. Met. Soc. 100, 133154.Google Scholar
Pao, H.-P.: 1970 A numerical computation of a confined rotating flow. Trans. ASME E: J. Appl Mech. 37, 480487.Google Scholar
Peckham, D. H. & Atkinson, S., 1957 Preliminary results of low speed wind tunnel tests on a Gothic wing of aspect ratio 1.0. Aero. Res. Counc. CP-508.Google Scholar
Ronnenberg, B.: 1977 Ein selbstjustierendes 3-KomponentenLaserdoppleranemometer mach dem Vergleichssorahlverfahren, angewandt für Untersuchungen in einer stationären zyl indersymmetrischen Drehströmung mit einen Rückstromgebiet. Max-Planck-Inst. Bericht 20Google Scholar
Sarpkaya, T.: 1971 On stationary travelling vortex breakdown. J. Fluid Mech. 45, 545592.Google Scholar
Squire, H. B.: 1960 Analysis of the ‘vortex breakdown’ phenomenon. Part I. Imperial College, Aero. Dept Rep. 102.Google Scholar
Sweet, R. A.: 1974 A generalized cyclic reduction algorithm. SIAM J. Number. Anal. 10, 506520Google Scholar
Vogel, H. U.: 1968 Experimentelle Ergebnisse über die laminare Strömung in einen zylindrischen Gehäuse mit darin rotierender Scheibe. Max-Planck-Inst. Bericht 6.Google Scholar
Williams, G. P.: 1967 Thermal convection in a rotating fluid annulus: Part 1. The basic axisymmetric flow. J. Atmos. Sci. 24, 144161.Google Scholar