Hostname: page-component-78c5997874-g7gxr Total loading time: 0 Render date: 2024-11-14T10:09:28.515Z Has data issue: false hasContentIssue false

Bending oscillations of a cylinder freely falling in still fluid

Published online by Cambridge University Press:  04 November 2020

Patricia Ern*
Affiliation:
Institut de Mécanique des Fluides de Toulouse (IMFT), CNRS, Université de Toulouse, France
Jérôme Mougel
Affiliation:
Institut de Mécanique des Fluides de Toulouse (IMFT), CNRS, Université de Toulouse, France
Sébastien Cazin
Affiliation:
Institut de Mécanique des Fluides de Toulouse (IMFT), CNRS, Université de Toulouse, France
Manuel Lorite-Díez
Affiliation:
Institut de Mécanique des Fluides de Toulouse (IMFT), CNRS, Université de Toulouse, France
Rémi Bourguet
Affiliation:
Institut de Mécanique des Fluides de Toulouse (IMFT), CNRS, Université de Toulouse, France
*
Email address for correspondence: ern@imft.fr

Abstract

We investigate experimentally the behaviour of an elongated flexible cylinder settling at moderate Reynolds number under the effect of buoyancy in a fluid otherwise at rest. The experiments uncover the development of large-amplitude periodic deformations of the cylinder (of the order of its diameter) in specific parameter ranges. Bending oscillations are observed to occur for two base flow situations, involving either a steady or an unsteady wake. In both cases, the sequence of oscillatory deformations emerging when the cylinder length is increased involves the bending modes of an unsupported cylinder with free ends. Comparison of the deformation frequency measured for the falling cylinder with the vortex shedding frequency expected for a non-deformable cylinder at the same Reynolds number indicates that the deformation is coupled to the wake unsteadiness. It also suggests that the cylinder degrees of freedom in deformability allow wake instability to be triggered at Reynolds numbers that would be subcritical for fixed rigid cylinders.

JFM classification

Type
JFM Rapids
Copyright
© The Author(s), 2020. Published by Cambridge University Press

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Assemat, P., Fabre, D. & Magnaudet, J. 2012 The onset of unsteadiness of two-dimensional bodies falling or rising freely in a viscous fluid: a linear study. J. Fluid Mech. 690, 173202.CrossRefGoogle Scholar
Bonnefis, P. 2019 Etude des instabilités de sillage, de forme et de trajectoire de bulles par une approche de stabilité linéaire globale. PhD thesis, Université de Toulouse.Google Scholar
Bourguet, R., Karniadakis, G. E. & Triantafyllou, M. S. 2011 Vortex-induced vibrations of a long flexible cylinder in shear flow. J. Fluid Mech. 677, 342382.CrossRefGoogle Scholar
Bourguet, R., Karniadakis, G. E. & Triantafyllou, M. S. 2013 Distributed lock-in drives broadband vortex-induced vibrations of a long flexible cylinder in shear flow. J. Fluid Mech. 717, 361375.CrossRefGoogle Scholar
Buffoni, E. 2003 Vortex shedding in subcritical conditions. Phys. Fluids 15, 814816.CrossRefGoogle Scholar
Cano-Lozano, J. C., Martínez-Bazán, C., Magnaudet, J. & Tchoufag, J. 2016 Paths and wakes of deformable nearly spheroidal rising bubbles close to the transition to path instability. Phys. Rev. Fluids 1 (5), 053604.CrossRefGoogle Scholar
Chaplin, J. R., Bearman, P. W., Huera-Huarte, F. J & Pattenden, R. J. 2005 Laboratory measurements of vortex-induced vibrations of a vertical tension riser in a stepped current. J. Fluids Struct. 21, 324.CrossRefGoogle Scholar
Cossu, C. & Morino, L. 2000 On the instability of a spring-mounted circular cylinder in a viscous flow at low Reynolds numbers. J. Fluids Struct. 14 (2), 183196.CrossRefGoogle Scholar
Ern, P., Risso, F., Fabre, D. & Magnaudet, J. 2012 Wake-induced oscillatory paths of bodies freely rising or falling in fluids. Annu. Rev. Fluid Mech. 44, 97121.CrossRefGoogle Scholar
Filella, A., Ern, P. & Roig, V. 2015 Oscillatory motion and wake of a bubble rising in a thin-gap cell. J. Fluid Mech. 778, 6088.CrossRefGoogle Scholar
Gedikli, E. D., Chelidze, D. & Dahl, J. M. 2018 Observed mode shape effects on the vortex-induced vibration of bending dominated flexible cylinders simply supported at both ends. J. Fluids Struct. 81, 399417.CrossRefGoogle Scholar
Hua, R.-N., Zhu, L. & Lu, X.-Y. 2014 Dynamics of fluid flow over a circular flexible plate. J. Fluid Mech. 759, 5672.CrossRefGoogle Scholar
Huera-Huarte, F. J., Bangash, Z. A. & González, L. M. 2014 Towing tank experiments on the vortex-induced vibrations of low mass ratio long flexible cylinders. J. Fluids Struct. 48, 8192.CrossRefGoogle Scholar
Inoue, O. & Sakuragi, A. 2008 Vortex shedding from a circular cylinder of finite length at low Reynolds numbers. Phys. Fluids 20 (3), 033601.CrossRefGoogle Scholar
Khalak, A. & Williamson, C. H. K. 1999 Motions, forces and mode transitions in vortex-induced vibrations at low mass-damping. J. Fluids Struct. 13, 813851.CrossRefGoogle Scholar
Leclercq, T. & de Langre, E. 2018 Vortex-induced vibrations of cylinders bent by the flow. J. Fluids Struct. 80, 7793.CrossRefGoogle Scholar
Mathai, V., Zhu, X., Sun, C. & Lohse, D. 2017 Mass and moment of inertia govern the transition in the dynamics and wakes of freely rising and falling cylinders. Phys. Rev. Lett. 119, 054501.CrossRefGoogle ScholarPubMed
Meliga, P. & Chomaz, J.-M. 2011 An asymptotic expansion for the vortex-induced vibrations of a circular cylinder. J. Fluid Mech. 671, 137167.CrossRefGoogle Scholar
Mougin, G. & Magnaudet, J. 2002 Path instability of a rising bubble. Phys. Rev. Lett. 88, 014502.CrossRefGoogle ScholarPubMed
Pfister, J.-L., Marquet, O. & Carini, M. 2019 Linear stability analysis of strongly coupled fluid-structure problems with the Arbitrary-Lagrangian-Eulerian method. Comput. Meth. Appl. Mech. Engng 355, 663689.CrossRefGoogle Scholar
Schouveiler, L. & Eloy, C. 2013 Flow-induced draping. Phys. Rev. Lett. 111, 064301.CrossRefGoogle ScholarPubMed
Seyed-Aghazadeh, B., Edraki, M. & Modarres-Sadeghi, Y. 2019 Effects of boundary conditions on vortex-induced vibration of a fully submerged flexible cylinder. Exp. Fluids 60, 114.CrossRefGoogle Scholar
Singh, S. P. & Mittal, S. 2005 Vortex-induced oscillations at low Reynolds numbers: hysteresis and vortex-shedding modes. J. Fluids Struct. 20, 10851104.CrossRefGoogle Scholar
Tam, D. 2015 Flexibility increases lift for passive fluttering wings. J. Fluid Mech. 765, R2.CrossRefGoogle Scholar
Tam, D., Bush, J., Robitaille, M. & Kudrolli, A. 2010 Tumbling dynamics of passive flexible wings. Phys. Rev. Lett. 104, 184504.CrossRefGoogle ScholarPubMed
Tchoufag, J., Fabre, D. & Magnaudet, J. 2014 Global linear stability analysis of the wake and path of buoyancy-driven disks and thin cylinders. J. Fluid Mech. 740, 278311.CrossRefGoogle Scholar
Toupoint, C., Ern, P. & Roig, V. 2019 Kinematics and wake of freely falling cylinders at moderate Reynolds numbers. J. Fluid Mech. 866, 82111.CrossRefGoogle Scholar
Vakil, A. & Green, S. I. 2009 Drag and lift coefficients of inclined finite circular cylinders at moderate Reynolds numbers. Comput. Fluids 38, 17711781.CrossRefGoogle Scholar
Veldhuis, C., Biesheuvel, A. & van Wijngaarden, L. 2008 Shape oscillations on bubbles rising in clean and in tap water. Phys. Fluids 20, 040705.CrossRefGoogle Scholar
Williamson, C. H. K. 1989 Oblique and parallel modes of vortex shedding in the wake of a circular cylinder at low Reynolds numbers. J. Fluid Mech. 206, 579627.CrossRefGoogle Scholar
Williamson, C. H. K. & Brown, G. L. 1998 A series in $1/\sqrt {Re}$ to represent the Strouhal–Reynolds number relationship of the cylinder wake. J. Fluids Struct. 12 (8), 10731085.CrossRefGoogle Scholar