Hostname: page-component-cd9895bd7-mkpzs Total loading time: 0 Render date: 2025-01-01T19:42:41.706Z Has data issue: false hasContentIssue false

Body-rock or lift-off in flow

Published online by Cambridge University Press:  22 October 2013

Frank T. Smith
Affiliation:
Department of Mathematics, UCL, Gower Street, London WC1E 6BT, UK
Phillip L. Wilson*
Affiliation:
Department of Mathematics & Statistics, University of Canterbury, Private Bag 4800, Christchurch 8140, New Zealand
*
Email address for correspondence: phillip.wilson@canterbury.ac.nz

Abstract

Conditions are investigated under which a body lying at rest or rocking on a solid horizontal surface can be removed from the surface by hydrodynamic forces or instead continues rocking. The investigation is motivated by recent observations on Martian dust movement as well as other small- and large-scale applications. The nonlinear theory of fluid–body interaction here has unsteady motion of an inviscid fluid interacting with a moving thin body. Various shapes of body are addressed together with a range of initial conditions. The relevant parameter space is found to be subtle as evolution and shape play substantial roles coupled with scaled mass and gravity effects. Lift-off of the body from the surface generally cannot occur without fluid flow but it can occur either immediately or within a finite time once the fluid flow starts up: parameters for this are found and comparisons are made with Martian observations.

Type
Papers
Copyright
©2013 Cambridge University Press 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Barbano, M. S., Pirrotta, C. & Gerardi, F. 2010 Large boulders along the south-eastern Ionian coast of Sicily: storm or tsunami deposits? Mar. Geol. 275, 140154.Google Scholar
Bascom, W. 1980 Waves and Beaches. Anchor/Doubleday.Google Scholar
Bridges, N. T., Ayoub, F., Avouac, J.-P., Leprince, S., Lucas, A. & Mattson, S. 2012a Earth-like sand fluxes on Mars. Nature 485, 339342.Google Scholar
Bridges, N. T., Bourke, M. C., Geissler, P. E., Banks, M. E., Colon, C., Diniega, S., Golombek, M. P., Hansen, C. J., Mattson, S., McEwen, A. S., Mellon, M. T., Stantzos, N. & Thomson, B. J. 2012b Planet-wide sand motion on Mars. Geology 40, 3134.CrossRefGoogle Scholar
Cox, R., Zentner, D. B., Kirchner, B. J. & Cook, M. S. 2012 Boulder ridges on the Aran Islands (Ireland): recent movements caused by storm waves, not tsunamis. J. Geol. 120, 249272.Google Scholar
Davy, R., Taylor, P. A., Weng, W. & Li, P.-Y. 2009 A model of dust in the Martian lower atmosphere. J. Geophys. Res. 114, D04108.Google Scholar
Godone, D. & Stanchi, S. 2011 Soil Erosion Studies. InTech.CrossRefGoogle Scholar
Gomez III, R. J., Aftosmis, M., Vicker, D., Meakin, R. L., Stuart, P. C., Rogers, S. E., Greathouse, J. S., Murman, S. M., Chan, W. M., Lee, D. E., Condon, G. L. & Crain, T. 2003 Debris transport analysis. Appendix D.8 of the Columbia Accident Investigation Board Report. Volume Two. PB2004-100867. NASA.Google Scholar
Gray, J. M. N. T. & Ancey, C. 2011 Multi-component particle-size segragation in shallow granular avalanches. J. Fluid Mech. 678, 535588.Google Scholar
Haberle, R. M., Murphy, J. R. & Schaeffer, J. 2003 Orbital change experiments with a Mars general circulation model. Icarus 161, 6689.Google Scholar
Hall, A. M., Hansom, J. D. & Williams, D. M. 2010 Wave-emplaced coarse debris and megaclasts in Ireland and Scotland: Boulder transport in a high-energy littoral environment: a discussion. J. Geol. 118, 699704.CrossRefGoogle Scholar
Hicks, P. D. & Smith, F. T. 2011 Skimming impacts and rebounds on shallow liquid layers. Proc. R. Soc. A 467, 653674.CrossRefGoogle Scholar
Hunt, J. C. R. 2005 Inland and coastal flooding: developments in prediction and prevention. Phil. Trans. R. Soc. A 363, 14751491.Google Scholar
Johnson, C. G. & Gray, J. M. N. T. 2011 Granular jets and hydraulic jumps on an inclined plane. J. Fluid Mech. 675, 87116.CrossRefGoogle Scholar
Kok, J. F. 2010a Difference in the wind speeds required for initiation versus continuation of sand transport on Mars: implications for dunes and dust storms. Phys. Rev. Lett. 104, 074502.CrossRefGoogle ScholarPubMed
Kok, J. F. 2010b An improved parameterization of wind blown sand flux on Mars that includes the effect of hysteresis. Geophys. Res. Lett. 37, L12202.CrossRefGoogle Scholar
Kok, J. F. 2012 Martian sand blowing in the wind. Nature 485, 312313.Google Scholar
Koumoutsakos, P., Pivkin, I. & Milde, F. 2013 The fluid mechanics of cancer and its therapy. Annu. Rev. Fluid Mech. 43, 325355.Google Scholar
Ku, D. N. 1997 Blood flow in arteries. Annu. Rev. Fluid Mech. 29, 399434.CrossRefGoogle Scholar
Lee, H. & Balachandar, S. 2010 Drag and lift forces on a spherical particle moving on a wall in a shear flow at finite $\mathit{Re}$ . J. Fluid Mech. 657, 89125.CrossRefGoogle Scholar
Mikami, T., Shibayama, T., Esteban, M. & Matsumaru, R. 2012 Field survey of the 2011 Tohoku earthquake and tsunami in Miyagi and Fukushima prefectures. Coast. Engng J. 54, 1250011.Google Scholar
Saffman, P. G. 1965 The lift on a small sphere in a slow shear flow. J. Fluid Mech. 22, 385400.CrossRefGoogle Scholar
Scheichl, B., Kluwick, A. & Smith, F. T. 2011 Break-away separation for high turbulence intensity and large Reynolds number. J. Fluid Mech. 670, 260300.Google Scholar
Scheichl, B., Kluwick, A., Smith, F. T. & Paton, J. 2012 A uniformly valid theory of turbulent separation. In Progress in Turbulence and Wind Energy IV (ed. Oberlack, M. et al. ), Springer Proceedings in Physics 141, pp. 8589. Springer.CrossRefGoogle Scholar
Schewe, G. 2001 Reynolds-number effects in flows around more-or-less bluff bodies. J. Wind Engng Ind. Aerodyn. 89, 12671289.CrossRefGoogle Scholar
Smith, F. T. & Ellis, A. S. 2010 On interaction between falling bodies and the surrounding fluid. Mathematika 56, 140168.Google Scholar
Smith, F. T. & Wilson, P. L. 2011 Fluid-body interactions: clashing, skimming, bouncing. Phil. Trans. R. Soc. A 369, 30073024.CrossRefGoogle ScholarPubMed
Sullivan, R., Arvidson, R., Bell III, J. F., Gellert, R., Golombek, M., Greeley, R., Herkenhoff, K., Johnson, J., Thompson, S., Whelley, P. & Wray, J. 2008 Wind-driven particle mobility on Mars: insights from Mars Exploration Rover observations at El Dorado and surroundings at Gusev Crater. J. Geophys. Res. 113, E06S07.Google Scholar
Taylor, P. A., Li, P.-Y., Michelangeli, D. V., Pathak, J. & Weng, W. 2007 Modelling dust distributions in the atmospheric boundary layer on Mars. Boundary-Layer Meteorol. 125, 305328.Google Scholar
Virmavirta, M., Kivekas, J. & Komi, P. V. 2001 Take-off aerodynamics in ski jumping. J. Biomech. 34, 465470.CrossRefGoogle ScholarPubMed
Wang, Z.-T. 2012 Entrainment of sand by wind on Mars. Int. J. Land Processes Arid Enviro. 1, 2729.Google Scholar
Witt, P. J., Carey, K. G. & Nguyen, T. V. 1999 Prediction of dust loss from conveyors using CFD modelling. In Proceedings of the Second International Conference on CFD in the Minerals and Process Industries. CSIRO.Google Scholar
Zeng, L., Najjar, F., Balachandar, S. & Fischer, P. 2009 Forces on a finite-sized particle located close to a wall in a linear shear flow. Phys. Fluids 21, 033302.CrossRefGoogle Scholar
Zimbelman, J. R. 2000 Nonactive dunes in the Acheron Fossae Region of Mars between the Viking and Mars Global Surveyor eras. Geophys. Res. Lett. 27, 1069.CrossRefGoogle Scholar