Hostname: page-component-cd9895bd7-8ctnn Total loading time: 0 Render date: 2024-12-30T22:18:38.068Z Has data issue: false hasContentIssue false

Boundary layer of elastic turbulence

Published online by Cambridge University Press:  21 September 2018

S. Belan*
Affiliation:
Massachusetts Institute of Technology, Cambridge, MA 02139, USA
A. Chernykh
Affiliation:
Institute of Automation and Electrometry SB RAS, 630090, Academician Koptyug ave. 1, Novosibirsk, Russia Novosibirsk State University, 630073, Prospekt K. Marksa 20, Novosibirsk, Russia
V. Lebedev
Affiliation:
Landau Institute for Theoretical Physics RAS, 142432, Ak. Semenova 1-A, Chernogolovka, Moscow region, Russia Higher School of Economics, 101000, Myasnitskaya 20, Moscow, Russia
*
Email address for correspondence: sergb27@yandex.ru

Abstract

We investigate theoretically the near-wall region in elastic turbulence of a dilute polymer solution in the limit of large Weissenberg number. As has been established experimentally, elastic turbulence possesses a boundary layer where the fluid velocity field can be approximated by a steady shear flow with relatively small fluctuations on the top of it. Assuming that at the bottom of the boundary layer the dissolved polymers can be considered as passive objects, we examine analytically and numerically the statistics of the polymer conformation, which is highly non-uniform in the wall-normal direction. Next, imposing the condition that the passive regime terminates at the border of the boundary layer, we obtain an estimate for the ratio of the mean flow to the magnitude of the flow fluctuations. This ratio is determined by the polymer concentration, the radius of gyration of polymers and their length in the fully extended state. The results of our asymptotic analysis reproduce the qualitative features of elastic turbulence at finite Weissenberg numbers.

Type
JFM Papers
Copyright
© 2018 Cambridge University Press 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Afonso, M. M. & Vincenzi, D. 2005 Nonlinear elastic polymers in random flow. J. Fluid Mech. 540, 99108.Google Scholar
Ahmad, A. & Vincenzi, D. 2016 Polymer stretching in the inertial range of turbulence. Phys. Rev. E 93 (5), 052605.Google Scholar
Balkovsky, E., Fouxon, A. & Lebedev, A. 2000 Turbulent dynamics of polymer solutions. Phys. Rev. Lett. 84, 47654768.Google Scholar
Balkovsky, E., Fouxon, A. & Lebedev, V. 2001 Turbulence of polymer solutions. Phys. Rev. E 64, 056301.Google Scholar
Berti, S., Bistagnino, A., Boffetta, G., Celani, A. & Musacchio, S. 2008 Two-dimensional elastic turbulence. Phys. Rev. E 77, 055306(R).Google Scholar
Berti, S. & Boffetta, G. 2010 Elastic waves and transition to elastic turbulence in a two-dimensional viscoelastic Kolmogorov flow. Phys. Rev. E 82, 036314.Google Scholar
Bird, R. B., Armstrong, R. C. & Hassager, O. 1977 Dynamics of Polymeric Liquids, vol. 1: Fluid Mechanics. Wiley.Google Scholar
Bird, R. B., Hassager, O., Armstrong, R. C. & Curtiss, C. F. 1987 Dynamics of Polymeric Liquids, vol. 2: Kinetic Theory. Wiley.Google Scholar
Bodiguel, H., Beaumont, J., Machado, A., Martinie, L., Kellay, H. & Colin, A. 2015 Flow enhancement due to elastic turbulence in channel flows of shear thinning fluids. Phys. Rev. Lett. 114, 028302.Google Scholar
Burghelea, T., Segre, E. & Steinberg, V. 2006 Role of elastic stress in statistical and scaling properties of elastic turbulence. Phys. Rev. Lett. 96, 214502.Google Scholar
Burghelea, T., Segre, E. & Steinberg, V. 2007 Elastic turbulence in von Karman swirling flow between two disks. Phys. Fluids 19, 053104.Google Scholar
Celani, A., Musacchio, S. & Vincenzi, D. 2005 Polymer transport in random flow. J. Stat. Phys. 118 (3–4), 531554.Google Scholar
Celani, A., Puliafito, A. & Turitsyn, K. 2005 Polymers in linear shear flow: a numerical study. Europhys. Lett. 70 (4), 464.Google Scholar
Chertkov, M. 2000 Polymer stretching by turbulence. Phys. Rev. Lett. 84, 47614764.Google Scholar
Chernykh, A. & Lebedev, V. 2011 Passive scalar transport in peripheral regions of random flows. J. Expl Theor. Phys. 113 (2), 352362.Google Scholar
Chertkov, M., Kolokolov, I., Lebedev, V. & Turitsyn, K. 2005 Polymer statistics in a random flow with mean shear. J. Fluid. Mech. 531, 251260.Google Scholar
Fouxon, A. & Lebedev, V. 2003 Spectra of turbulence in dilute polymer solutions. Phys. Fluids 15, 20602072.Google Scholar
Gerashchenko, S., Chevallard, C. & Steinberg, V. 2005 Single-polymer dynamics: coil-stretch transition in a random flow. Europhys. Lett. 71, 221227.Google Scholar
Groisman, A. & Steinberg, V. 2000 Elastic turbulence in a polymer solution flow. Nature 405, 5355.Google Scholar
Groisman, A. & Steinberg, V. 2001 Efficient mixing at low Reynolds numbers using polymer additives. Nature 410, 905908.Google Scholar
Groisman, A. & Steinberg, V. 2004 Elastic turbulence in curvilinear flows of polymer solutions. New J. Phys. 6, 29.Google Scholar
Jun, Y. & Steinberg, V. 2011 Elastic turbulence in a curvilinear channel flow. Phys. Rev. E 84, 056325.Google Scholar
Jun, Y. & Steinberg, V. 2017 Polymer concentration and properties of elastic turbulence in a von Karman swirling flow. Phys. Rev. Fluids 2 (10), 103301.Google Scholar
Landau, L. D. & Lifshitz, E. M. 1987 Course of Theoretical Physics, vol. 6: Fluid Mechanics. Pergamon Press.Google Scholar
Lebedev, V. V. & Turitsyn, K. S. 2004 Passive scalar evolution in peripheral regions. Phys. Rev. E 69, 036301.Google Scholar
Pan, L., Morozov, A., Wagner, C. & Arratia, P. E. 2013 Nonlinear elastic instability in channel flows at low Reynolds numbers. Phys. Rev. Lett. 110, 174502.Google Scholar
Turitsyn, K. S. 2007 Polymer dynamics in chaotic flows with strong shear component. J. Expl Theor. Phys. 105 (3), 655664.Google Scholar
Vincenzi, D., Perlekar, P., Biferale, L. & Toschi, F. 2015 Impact of the Peterlin approximation on polymer dynamics in turbulent flows. Phys. Rev. E 92 (5), 053004.Google Scholar