Hostname: page-component-78c5997874-m6dg7 Total loading time: 0 Render date: 2024-11-11T03:28:16.420Z Has data issue: false hasContentIssue false

Boundary streaming by internal waves

Published online by Cambridge University Press:  31 October 2018

A. Renaud*
Affiliation:
Univ Lyon, ENS de Lyon, Univ Claude Bernard, CNRS, Laboratoire de Physique, F-69342 Lyon, France
A. Venaille
Affiliation:
Univ Lyon, ENS de Lyon, Univ Claude Bernard, CNRS, Laboratoire de Physique, F-69342 Lyon, France
*
Email address for correspondence: antoine.renaud@ens-lyon.fr

Abstract

Damped internal wave beams in stratified fluids have long been known to generate strong mean flows through a mechanism analogous to acoustic streaming. While the role of viscous boundary layers in acoustic streaming has been thoroughly addressed, it remains largely unexplored in the case of internal waves. Here we compute the mean flow generated close to an undulating wall that emits internal waves in a viscous, linearly stratified two-dimensional Boussinesq fluid. Using a quasi-linear approach, we demonstrate that the form of the boundary conditions dramatically impacts the generated boundary streaming. In the no-slip scenario, the early-time Reynolds stress divergence within the viscous boundary layer is much stronger than within the bulk while also driving flow in the opposite direction. Whatever the boundary condition, boundary streaming is however dominated by bulk streaming at larger time. Using a Wentzel–Kramers–Brillouin approach, we investigate the consequences of adding boundary streaming effects to an idealised model of wave–mean flow interactions known to reproduce the salient features of the quasi-biennial oscillation. The presence of wave boundary layers has a quantitative impact on the flow reversals.

Type
JFM Papers
Copyright
© 2018 Cambridge University Press 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Adcroft, A., Campin, J. M., Doddridge, E., Dutkiewicz, S., Evangelinos, C., Ferreira, D., Follows, M., Forget, G., Fox-Kemper, B., Heimbach, P., Hill, C., Hill, E., Hill, H., Jahn, O., Klymak, J., Losch, M., Marshall, J., Maze, G., Mazloff, M., Menemenlis, D., Molod, A. & Scott, J.2018 MITgcm’s User Manual. https://mitgcm.readthedocs.io/en/latest/.Google Scholar
Adcroft, A., Hill, C. & Marshall, J. 1997 Representation of topography by shaved cells in a height coordinate ocean model. Mon. Weath. Rev. 125 (9), 22932315.Google Scholar
Baldwin, M. P., Gray, L. J., Dunkerton, T. J., Hamilton, K., Haynes, P. H., Randel, W. J., Holton, J. R., Alexander, M. J., Hirota, I., Horinouchi, T., Jones, D. B. A, Kinnersley, J. S., Marquardt, C., Sato, K. & Takahashi, M. 2001 The quasi-biennial oscillation. Rev. Geophys. 39 (2), 179229.Google Scholar
Beckebanze, F. & Maas, L. 2016 Damping of 3D internal wave attractors by lateral walls. In Proceedings of the VIIIth International Symposium on Stratified Flows, San Diego, USA.Google Scholar
Bordes, G., Venaille, A., Joubaud, S., Odier, P. & Dauxois, T. 2012 Experimental observation of a strong mean flow induced by internal gravity waves. Phys. Fluids 24 (8), 086602.Google Scholar
Bühler, O. 2014 Waves and Mean Flows. Cambridge University Press.Google Scholar
Chini, G. P. & Leibovich, S. 2003 An analysis of the Klemp and Durran radiation boundary condition as applied to dissipative internal waves. J. Phys. Oceanogr. 33 (11), 23942407.Google Scholar
Eckart, C. 1948 Vortices and streams caused by sound waves. Phys. Rev. 73 (1), 68.Google Scholar
Fan, B., Kataoka, T. & Akylas, T. R. 2018 On the interaction of an internal wavepacket with its induced mean flow and the role of streaming. J. Fluid Mech. 838, R1.Google Scholar
Gostiaux, L., Didelle, H., Mercier, S. & Dauxois, T. 2006 A novel internal waves generator. Exp. Fluids 42, 123130.Google Scholar
Grisouard, N. & Bühler, O. 2012 Forcing of oceanic mean flows by dissipating internal tides. J. Fluid Mech. 708, 250278.Google Scholar
Grisouard, N. & Thomas, L. N. 2015 Critical and near-critical reflections of near-inertial waves off the sea surface at ocean fronts. J. Fluid Mech. 765, 273302.Google Scholar
Grisouard, N. & Thomas, L. N. 2016 Energy exchanges between density fronts and near-inertial waves reflecting off the ocean surface. J. Phys. Oceanogr. 46 (2), 501516.Google Scholar
Kataoka, T. & Akylas, T. R. 2015 On three-dimensional internal gravity wave beams and induced large-scale mean flows. J. Fluid Mech. 769, 621634.Google Scholar
Kim, E. & MacGregor, K. B. 2001 Gravity wave-driven flows in the solar tachocline. Astrophys. J. Lett. 556 (2), L117L120.Google Scholar
Legg, S. 2014 Scattering of low-mode internal waves at finite isolated topography. J. Phys. Oceanogr. 44 (1), 359383.Google Scholar
Lighthill, J. 1978 Acoustic streaming. J. Sound Vib. 61 (3), 391418.Google Scholar
Maas, L., Benielli, D., Sommeria, J. & Lam, F. A. 1997 Observation of an internal wave attractor in a confined, stably stratified fluid. Nature 388 (6642), 557561.Google Scholar
Muraschko, J., Fruman, M. D., Achatz, U., Hickel, S. & Toledo, Y. 2015 On the application of Wentzel–Kramers–Brillouin theory for the simulation of the weakly nonlinear dynamics of gravity waves. Q. J. R. Meteorol. Soc. 141 (688), 676697.Google Scholar
Nikurashin, M. & Ferrari, R. 2010 Radiation and dissipation of internal waves generated by geostrophic motions impinging on small-scale topography: application to the Southern Ocean. J. Phys. Oceanogr. 40 (9), 20252042.Google Scholar
Nyborg, W. L. 1958 Acoustic streaming near a boundary. J. Acoust. Soc. Am. 30 (4), 329339.Google Scholar
Passaggia, P.-Y., Meunier, P. & Le Dizès, S. 2014 Response of a stratified boundary layer on a tilted wall to surface undulations. J. Fluid Mech. 751, 663684.Google Scholar
Plumb, R. A. 1977 The interaction of two internal waves with the mean flow: implications for the theory of the quasi-biennial oscillation. J. Atmos. Sci. 34 (12), 18471858.Google Scholar
Plumb, R. A. & McEwan, A. D. 1978 The instability of a forced standing wave in a viscous stratified fluid: a laboratory analogue of the quasi-biennial oscillation. J. Atmos. Sci. 35 (10), 18271839.Google Scholar
Rayleigh, Lord 1884 On the circulation of air observed in Kundt’s tubes, and on some allied acoustical problems. Phil. Trans. R. Soc. Lond. A 175, 121.Google Scholar
Riley, N. 2001 Steady streaming. Annu. Rev. Fluid Mech. 33 (1), 4365.Google Scholar
Semin, B., Facchini, G., Pétrélis, F. & Fauve, S. 2016 Generation of a mean flow by an internal wave. Phys. Fluids 28 (9), 096601.Google Scholar
Shakespeare, C. J. & Hogg, A. McC. 2017 The viscous lee wave problem and its implications for ocean modelling. Ocean Model. 113, 2229.Google Scholar
Sutherland, B. R. 2010 Internal Gravity Waves. Cambridge University Press.Google Scholar
Voisin, B. 2003 Limit states of internal wave beams. J. Fluid Mech. 496, 243293.Google Scholar
Wedi, N. P. & Smolarkiewicz, P. K. 2006 Direct numerical simulation of the Plumb–McEwan laboratory analog of the QBO. J. Atmos. Sci. 63 (12), 32263252.Google Scholar
Xie, J. & Vanneste, J. 2014 Boundary streaming with Navier boundary condition. Phys. Rev. E 89 (6), 063010.Google Scholar