Hostname: page-component-78c5997874-mlc7c Total loading time: 0 Render date: 2024-11-14T02:54:03.915Z Has data issue: false hasContentIssue false

Boundary-induced autophoresis of isotropic colloids: anomalous repulsion in the lubrication limit

Published online by Cambridge University Press:  22 December 2016

Ehud Yariv*
Affiliation:
Department of Mathematics, Technion - Israel Institute of Technology, Haifa 32000, Israel
*
Email address for correspondence: udi@technion.ac.il

Abstract

When suspended in a liquid solution, chemically active colloids may self-propel due to an asymmetry in either particle shape or the interfacial distribution of solute absorption. We here consider a chemically homogeneous spherical particle which undergoes self-diffusiophoresis due to the presence of nearby inert wall. In particular, we focus upon the near-contact limit where it was recently observed (Yariv, Phys. Rev. Fluids, vol. 1 (3), 2016, 032101) that the solute-concentration profile within the narrow gap separating the particle and the wall cannot be uniquely determined by a gap-scale analysis. We here revisit this near-contact limit using matched asymptotic expansions, the inner region being the gap domain and the outer region being on the particle scale. Asymptotic matching with the Hankel-transform representation of the outer distribution of solute concentration serves to determine both the scaling and magnitude of the corresponding inner profile. The ensuing gap-scale pressure field, set by a lubrication mechanism, gives rise to an anomalous particle–wall interaction, scaling as an irrational power of the gap clearance.

Type
Papers
Copyright
© 2016 Cambridge University Press 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Anderson, J. L. 1989 Colloid transport by interfacial forces. Annu. Rev. Fluid Mech. 30, 139165.Google Scholar
Bender, C. M. & Orszag, S. A. 1978 Advanced Mathematical Methods for Scientists and Engineers. McGraw-Hill.Google Scholar
Brown, A. T., Vladescu, I. D., Dawson, A., Vissers, T., Schwarz-Linek, J., Lintuvuori, J. S. & Poon, W. C. K. 2016 Swimming in a crystal. Soft Matt. 12, 131140.Google Scholar
Córdova-Figueroa, U. M. & Brady, J. F. 2008 Osmotic propulsion: the osmotic motor. Phys. Rev. Lett. 100 (15), 158303.Google Scholar
Cox, R. G. & Brenner, H. 1967 The slow motion of a sphere through a viscous fluid towards a plane surface – II. Small gap widths, including inertial effects. Chem. Engng Sci. 22, 17531777.Google Scholar
Das, S., Garg, A., Campbell, A. I., Howse, J., Sen, A., Velegol, D., Golestanian, R. & Ebbens, S. J. 2015 Boundaries can steer active janus spheres. Nat. Commun. 6, 8999.Google Scholar
Domínguez, A., Malgaretti, P., Popescu, M. N. & Dietrich, S. 2016 Effective interaction between active colloids and fluid interfaces induced by marangoni flows. Phys. Rev. Lett. 116, 078301.Google Scholar
Ebbens, S., Tu, M.-H., Howse, J. R. & Golestanian, R. 2012 Size dependence of the propulsion velocity for catalytic janus-sphere swimmers. Phys. Rev. E 85 (2), 020401.Google Scholar
Goldman, A. J., Cox, R. G. & Brenner, H. 1967 Slow viscous motion of a sphere parallel to a plane wall – I. Motion through a quiescent fluid. Chem. Engng Sci. 22, 637651.Google Scholar
Golestanian, R., Liverpool, T. B. & Ajdari, A. 2007 Designing phoretic micro-and nano-swimmers. New J. Phys. 9, 126.Google Scholar
Hinch, E. J. 1991 Perturbation Methods. Cambridge University Press.Google Scholar
Ibrahim, Y. & Liverpool, T. B. 2015 The dynamics of a self-phoretic Janus swimmer near a wall. Europhys. Lett. 111 (4), 48008.Google Scholar
Jeffrey, D. J. 1978 The temperature field or electric potential around two almost touching spheres. J. Inst. Math. Applics 22, 337351.Google Scholar
Kamke, E. 2013 Differentialgleichungen Lösungsmethoden und Lösungen. Springer.Google Scholar
Kreuter, C., Siems, U., Nielaba, P., Leiderer, P. & Erbe, A. 2013 Transport phenomena and dynamics of externally and self-propelled colloids in confined geometry. Eur. Phys. J. Special Topics 222 (11), 29232939.Google Scholar
Lebedev, N. N. 1972 Special Functions and their Applications. Dover.Google Scholar
Michelin, S. & Lauga, E. 2014 Phoretic self-propulsion at finite Péclet numbers. J. Fluid Mech. 747, 572604.Google Scholar
Michelin, S. & Lauga, E. 2015 Autophoretic locomotion from geometric asymmetry. Eur. Phys. J. E Soft Matt. 38 (2), 116.Google ScholarPubMed
Michelin, S., Lauga, E. & Bartolo, D. 2013 Spontaneous autophoretic motion of isotropic particles. Phys. Fluids 25 (6), 061701.Google Scholar
Moon, P. & Spencer, D. E. 1988 Field Theory Handbook. Springer.Google Scholar
Mozaffari, A., Sharifi-Mood, N., Koplik, J. & Maldarelli, C. 2016 Self-diffusiophoretic colloidal propulsion near a solid boundary. Phys. Fluids 28 (5), 053107.Google Scholar
Schnitzer, O. & Yariv, E. 2015 Osmotic self-propulsion of slender particles. Phys. Fluids 27 (3), 031701.Google Scholar
Shklyaev, S., Brady, J. F. & Córdova-Figueroa, U. M. 2014 Non-spherical osmotic motor: chemical sailing. J. Fluid Mech. 748, 488520.Google Scholar
Simmchen, J., Katuri, J., Uspal, W. E., Popescu, M. N., Tasinkevych, M. & Sanchez, S. 2016 Topographical pathways guide chemical microswimmers. Nat. Commun. 7, 10598.Google Scholar
Sneddon, I. N. 1972 The Use of Integral Transforms. McGraw-Hill.Google Scholar
Soto, R. & Golestanian, R. 2014 Self-assembly of catalytically active colloidal molecules: tailoring activity through surface chemistry. Phys. Rev. Lett. 112 (6), 068301–5.Google Scholar
Uspal, W. E., Popescu, M. N., Dietrich, S. & Tasinkevych, M. 2015 Self-propulsion of a catalytically active particle near a planar wall: from reflection to sliding and hovering. Soft Matt. 11 (3), 434438.Google Scholar
Uspal, W. E., Popescu, M. N., Dietrich, S. & Tasinkevych, M. 2016 Guiding catalytically active particles with chemically patterned surfaces. Phys. Rev. Lett. 117 (4), 048002–5.Google Scholar
Volpe, G., Buttinoni, I., Vogt, D., Kümmerer, H.-J. & Bechinger, C. 2011 Microswimmers in patterned environments. Soft Matt. 7 (19), 88108815.Google Scholar
Yariv, E. 2016a Thermophoresis of confined colloids in the near-contact limit. Phys. Rev. Fluids 1 (2), 022101.Google Scholar
Yariv, E. 2016b Wall-induced self-diffusiophoresis of active isotropic colloids. Phys. Rev. Fluids 1 (3), 032101.Google Scholar