Hostname: page-component-745bb68f8f-d8cs5 Total loading time: 0 Render date: 2025-01-28T06:52:24.981Z Has data issue: false hasContentIssue false

Bubble dynamics and atomization in evaporating polymeric droplets

Published online by Cambridge University Press:  14 November 2022

K.S. Raghuram Gannena
Affiliation:
Department of Mechanical Engineering, Indian Institute of Science, Bengaluru 560012, India
D. Chaitanya Kumar Rao
Affiliation:
Department of Aerospace Engineering, Indian Institute of Technology Kanpur, Kanpur 208016, India
Durbar Roy
Affiliation:
Department of Mechanical Engineering, Indian Institute of Science, Bengaluru 560012, India
Aloke Kumar*
Affiliation:
Department of Mechanical Engineering, Indian Institute of Science, Bengaluru 560012, India
Saptarshi Basu*
Affiliation:
Department of Mechanical Engineering, Indian Institute of Science, Bengaluru 560012, India
*
Email addresses for correspondence: alokekumar@iisc.ac.in, sbasu@iisc.ac.in
Email addresses for correspondence: alokekumar@iisc.ac.in, sbasu@iisc.ac.in

Abstract

We investigate the interaction of an aqueous polymeric droplet with a tuneable continuous laser in an acoustically levitated environment. The effect of laser irradiation intensity and polymeric concentration on various spatio-temporal parameters is unearthed using high-speed shadowgraphy and theoretical scaling analysis. We observe four temporal phases: droplet evaporation, vapour bubble growth followed by membrane inflation, bubble/membrane rupture through hole nucleation and droplet breakup. During the initial droplet evaporation phase, concentration build-up at the droplet surface beyond a critical limit leads to the formation of a skin layer. It is revealed that, at a given location inside the droplet, hot spots occur, and the maximum temperature at the hot spots scales linearly with irradiation intensity until a bubble nucleates. The low-intensity laser interaction leads to symmetric membrane inflation that eventually forms holes at droplet poles and cracks on the shell surface. On the contrary, high intensity causes early bubble nucleation followed by asymmetric membrane inflation that eventually ruptures through multiple hole formation. Furthermore, the growth and rupture of the membrane is followed by a catastrophic breakup of the droplet. Two dominant atomization modes are reported at significantly high irradiation intensities: stable sheet collapse and unstable sheet breakup. The evolution of droplets into a stable/unstable sheet follows universally observed ligament and hole dynamics. A regime map is shown to describe the influence of polymer concentration and irradiation intensity on the strength and mode of droplet atomization.

JFM classification

Type
JFM Papers
Copyright
© The Author(s), 2022. Published by Cambridge University Press

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Al Zaitone, B., Al-Zahrani, A., Al-Shahrani, S. & Lamprecht, A. 2020 Drying of a single droplet of dextrin: drying kinetics modeling and particle formation. Intl J. pharm. 574, 118888.CrossRefGoogle ScholarPubMed
Avila, S.R.G. & Ohl, C.D. 2016 Fragmentation of acoustically levitating droplets by laser-induced cavitation bubbles. J. Fluid Mech. 805, 551576.CrossRefGoogle Scholar
Baldwin, K.A. & Fairhurst, D.J. 2014 The effects of molecular weight, evaporation rate and polymer concentration on pillar formation in drying poly (ethylene oxide) droplets. Colloids Surf. A: Physicochem. Engng Aspects 441, 867871.Google Scholar
Baldwin, K.A., Granjard, M., Willmer, D.I., Sefiane, K. & Fairhurst, D.J. 2011 Drying and deposition of poly (ethylene oxide) droplets determined by Peclet number. Soft Matt. 7 (17), 78197826.CrossRefGoogle Scholar
Baldwin, K.A., Roest, S., Fairhurst, D.J., Sefiane, K. & Shanahan, M.E. 2012 Monolith formation and ring-stain suppression in low-pressure evaporation of poly (ethylene oxide) droplets. J. Fluid Mech. 695, 321329.CrossRefGoogle Scholar
Balgis, R., Anilkumar, G.M., Sago, S., Ogi, T. & Okuyama, K. 2012 Rapid in situ synthesis of spherical microflower Pt/C catalyst via spray-drying for high performance fuel cell application. Fuel Cells 12 (4), 665669.CrossRefGoogle Scholar
Barbosa, J. & Teixeira, P. 2017 Development of probiotic fruit juice powders by spray-drying: a review. Food Rev. Intl 33 (4), 335358.CrossRefGoogle Scholar
Basu, S. & Cetegen, B.M. 2008 Modeling of thermophysical processes in liquid ceramic precursor droplets heated by monochromatic irradiation. J. Heat Transfer 130 (7), 071501.CrossRefGoogle Scholar
Bertola, V. 2010 Effect of polymer additives on the apparent dynamic contact angle of impacting drops. Colloids Surf. A: Physicochem. Engng Aspects 363 (1–3), 135140.CrossRefGoogle Scholar
Bertola, V. 2013 Dynamic wetting of dilute polymer solutions: the case of impacting droplets. Adv. Colloid Interface Sci. 193, 111.CrossRefGoogle ScholarPubMed
Bertola, V. 2014 Effect of polymer concentration on the dynamics of dilute polymer solution drops impacting on heated surfaces in the Leidenfrost regime. Exp. Therm. Fluid Sci. 52, 259269.CrossRefGoogle Scholar
Brian, D., Ahmadian-Yazdi, M.R., Barratt, C. & Eslamian, M. 2019 Impact dynamics and deposition of perovskite droplets on PEDOT: PSS and TiO2 coated glass substrates. Exp. Therm. Fluid Sci. 105, 181190.CrossRefGoogle Scholar
Brian, D. & Eslamian, M. 2019 Analysis of impact dynamics and deposition of single and multiple PEDOT: PSS solution droplets. Exp. Fluids 60 (9), 138.CrossRefGoogle Scholar
Califano, V., Calabria, R. & Massoli, P. 2014 Experimental evaluation of the effect of emulsion stability on micro-explosion phenomena for water-in-oil emulsions. Fuel 117, 8794.CrossRefGoogle Scholar
Chen, L., Wang, Y., Peng, X., Zhu, Q. & Zhang, K. 2018 Impact dynamics of aqueous polymer droplets on superhydrophobic surfaces. Macromolecules 51 (19), 78177827.CrossRefGoogle Scholar
Chung, S.H. & Kim, J.S. 1991 An experiment on vaporization and microexplosion of emulsion fuel droplets on a hot surface. In Symposium (International) on Combustion, vol. 23, no. 1, pp. 1431–1435. Elsevier.CrossRefGoogle Scholar
Culick, F.E. 1960 Comments on a ruptured soap film. J. Appl. Phys. 31 (6), 11281129.CrossRefGoogle Scholar
Delville, J.P., de Saint Vincent, M.R., Schroll, R.D., Chraibi, H., Issenmann, B., Wunenburger, R., Lasseux, D., Zhang, W.W. & Brasselet, E. 2009 Laser microfluidics: fluid actuation by light. J. Opt. A: Pure Appl. Opt. 11 (3), 034015.CrossRefGoogle Scholar
Eggers, J. & Villermaux, E. 2008 Physics of liquid jets. Rep. Prog. Phys. 71 (3), 036601.CrossRefGoogle Scholar
Eldred, L.B., Baker, W.P. & Palazotto, A.N. 1995 Kelvin-Voigt versus fractional derivative model as constitutive relations for viscoelastic materials. AIAA J. 33 (3), 547550.CrossRefGoogle Scholar
Francois, J., Sarazin, D., Schwartz, T. & Weill, G. 1979 Polyacrylamide in water: molecular weight dependence of < R2 > and [η] and the problem of the excluded volume exponent. Polymer 20 (8), 969975.CrossRefGoogle Scholar
Fu, N., Woo, M.W. & Chen, X.D. 2012 Single droplet drying technique to study drying kinetics measurement and particle functionality: a review. Dry. Technol. 30 (15), 17711785.CrossRefGoogle Scholar
German, G. & Bertola, V. 2009 Impact of shear-thinning and yield-stress drops on solid substrates. J. Phys: Condens. Matter 21 (37), 375111.Google ScholarPubMed
Har, C.L., Fu, N., Chan, E.S., Tey, B.T. & Chen, X.D. 2017 Unraveling the droplet drying characteristics of crystallization-prone mannitol–experiments and modeling. AIChE J. 63 (6), 18391852.CrossRefGoogle Scholar
Huh, H.K., Jung, S., Seo, K.W. & Lee, S.J. 2015 Role of polymer concentration and molecular weight on the rebounding behaviors of polymer solution droplet impacting on hydrophobic surfaces. Microfluid. Nanofluid. 18 (5–6), 12211232.CrossRefGoogle Scholar
Iskandar, F. 2009 Nanoparticle processing for optical applications–a review. Adv. Powder Technol. 20 (4), 283292.CrossRefGoogle Scholar
Jackson, G.S. & Avedisian, C.T. 1998 Combustion of unsupported water-in-n-heptane emulsion droplets in a convection-free environment. Intl J. Heat Mass Transfer 41 (16), 25032515.CrossRefGoogle Scholar
Joseph, D.D., Belanger, J. & Beavers, G.S. 1999 Breakup of a liquid drop suddenly exposed to a high-speed airstream. Intl J. Multiphase Flow 25 (6–7), 12631303.CrossRefGoogle Scholar
Kimura, M., Ihara, H., Okajima, S. & Iwama, A. 1986 Combustion behaviors of emulsified hydrocarbons and JP-4/N2H4 droplets at weightless and free falling conditions. Combust. Sci. Technol. 44 (5–6), 289306.CrossRefGoogle Scholar
Klein, A.L., Bouwhuis, W., Visser, C.W., Lhuissier, H., Sun, C., Snoeijer, J.H., Villermaux, E., Lohse, D. & Gelderblom, H. 2015 Drop shaping by laser-pulse impact. Phys. Rev. Appl. 3 (4), 044018.CrossRefGoogle Scholar
Klein, A.L., Kurilovich, D., Lhuissier, H., Versolato, O.O., Lohse, D., Villermaux, E. & Gelderblom, H. 2020 Drop fragmentation by laser-pulse impact. J. Fluid Mech. 893, A7.CrossRefGoogle Scholar
Kulicke, W.M., Kniewske, R. & Klein, J. 1982 Preparation, characterization, solution properties and rheological behaviour of polyacrylamide. Prog. Polym. Sci. 8 (4), 373468.CrossRefGoogle Scholar
Lasheras, J.C., Kennedy, I.M. & Dryer, F.L. 1981 Burning of distillate fuel droplets containing alcohol or water: effect of additive concentration. Combust. Sci. Technol. 26 (3–4), 161169.CrossRefGoogle Scholar
Li, B., Chen, L. & Joo, S. 2021 Impact dynamics of Newtonian and viscoelastic droplets on heated surfaces at low Weber number. Case Stud. Therm. Engng 26, 101109.CrossRefGoogle Scholar
Li, X. & McKenna, G.B. 2015 Ultrathin polymer films: rubbery stiffening, fragility, and $T_g$ reduction. Macromolecules 48 (17), 63296336.CrossRefGoogle Scholar
Littringer, E.M., Mescher, A., Eckhard, S., Schröttner, H., Langes, C., Fries, M., Griesser, U., Walzel, P. & Urbanetz, N.A. 2012 Spray drying of mannitol as a drug carrier—the impact of process parameters on product properties. Dry. Technol. 30 (1), 114124.CrossRefGoogle Scholar
Mamalis, D., Koutsos, V., Sefiane, K., Kagkoura, A., Kalloudis, M. & Shanahan, M.E. 2015 Effect of poly (ethylene oxide) molecular weight on the pinning and pillar formation of evaporating sessile droplets: the role of the interface. Langmuir 31 (21), 59085918.CrossRefGoogle ScholarPubMed
Munoz-Ibanez, M., Nuzzo, M., Turchiuli, C., Bergenståhl, B., Dumoulin, E. & Millqvist-Fureby, A. 2016 The microstructure and component distribution in spray-dried emulsion particles. Food Struct. 8, 1624.CrossRefGoogle Scholar
Mura, E., Calabria, R., Califano, V., Massoli, P. & Bellettre, J. 2014 Emulsion droplet micro-explosion: analysis of two experimental approaches. Exp. Therm. Fluid Sci. 56, 6974.CrossRefGoogle Scholar
Mura, E., Josset, C., Loubar, K., Huchet, G. & Bellettre, J. 2010 Effect of dispersed water droplet size in microexplosion phenomenon forwater in oil emulsion. Atom. Sprays 20 (9), 791799.CrossRefGoogle Scholar
O'Connell, P.A., Wang, J., Ishola, T.A. & McKenna, G.B. 2012 Exceptional property changes in ultrathin films of polycarbonate: glass temperature, rubbery stiffening, and flow. Macromolecules 45 (5), 24532459.CrossRefGoogle Scholar
Okuzono, T., Ozawa, K.Y. & Doi, M. 2006 Simple model of skin formation caused by solvent evaporation in polymer solutions. Phys. Rev. Lett. 97 (13), 136103.CrossRefGoogle ScholarPubMed
Pal, M. et al. 2016 Scalable synthesis of mesoporous titania microspheres via spray-drying method. J. Colloid Interface Sci. 479, 150159.CrossRefGoogle ScholarPubMed
Park, B.S. & Armstrong, R.L. 1989 Laser droplet heating: fast and slow heating regimes. Appl. Opt. 28 (17), 36713680.CrossRefGoogle ScholarPubMed
Pathak, B. & Basu, S. 2016 a Modulation of buckling dynamics in nanoparticle laden droplets using external heating. Langmuir 32 (11), 25912600.CrossRefGoogle ScholarPubMed
Pathak, B. & Basu, S. 2016 b Phenomenology of break-up modes in contact free externally heated nanoparticle laden fuel droplets. Phys. Fluids 28 (12), 123302.CrossRefGoogle Scholar
Pauchard, L. & Allain, C. 2003 a Buckling instability induced by polymer solution drying. Europhys. Lett. 62 (6), 897.CrossRefGoogle Scholar
Pauchard, L. & Allain, C. 2003 b Mechanical instability induced by complex liquid desiccation. C. R. Phys. 4 (2), 231239.CrossRefGoogle Scholar
Pauchard, L. & Allain, C. 2003 c Stable and unstable surface evolution during the drying of a polymer solution drop. Phys. Rev. E 68 (5), 052801.CrossRefGoogle ScholarPubMed
Paudel, A., Worku, Z.A., Meeus, J., Guns, S. & Van den Mooter, G. 2013 Manufacturing of solid dispersions of poorly water soluble drugs by spray drying: formulation and process considerations. Intl J. pharm. 453 (1), 253284.CrossRefGoogle ScholarPubMed
Plesset, M.S. & Zwick, S.A. 1954 The growth of vapor bubbles in superheated liquids. J. Appl. Phys. 25 (4), 493500.CrossRefGoogle Scholar
Prishivalko, A.P. & Leiko, S.T. 1980 Radiative heating and evaporation of droplets. J. Appl. Spectrosc. 33 (4), 11371143.CrossRefGoogle Scholar
Raghuram, G.K., Bansal, L., Basu, S. & Kumar, A. 2021 Suppression of coffee ring effect in high molecular weight polyacrylamide droplets evaporating on hydrophobic surfaces. Colloids Surf. A: Physicochem. Engng Aspects 612, 126002.CrossRefGoogle Scholar
Rao, D.C.K. & Basu, S. 2020 a Atomization modes for levitating emulsified droplets undergoing phase change. Exp. Fluids 61 (2), 41.CrossRefGoogle Scholar
Rao, D.C.K. & Basu, S. 2020 b Phenomenology of disruptive breakup mechanism of a levitated evaporating emulsion droplet. Exp. Therm. Fluid Sci. 115, 110086.Google Scholar
Rao, D.C.K. & Karmakar, S. 2018 Crown formation and atomization in burning multi-component fuel droplets. Exp. Therm. Fluid Sci. 98, 303308.CrossRefGoogle Scholar
Rao, D.C.K., Karmakar, S. & Basu, S. 2018 Bubble dynamics and atomization mechanisms in burning multi-component droplets. Phys. Fluids 30 (6), 067101.CrossRefGoogle Scholar
Rao, D.C.K., Singh, A.P. & Basu, S. 2021 Laser-induced deformation and fragmentation of droplets in an array. Intl J. Multiphase Flow 148, 103925.CrossRefGoogle Scholar
, M.I. 2006 Formulating drug delivery systems by spray drying. Dry. Technol. 24 (4), 433446.CrossRefGoogle Scholar
Renaud, F., Dion, J.L., Chevallier, G., Tawfiq, I. & Lemaire, R. 2011 A new identification method of viscoelastic behavior: application to the generalized Maxwell model. Mech. Syst. Signal Process. 25 (3), 9911010.CrossRefGoogle Scholar
Rubinstein, M., & Colby, R. H. 2003. Polymer Physics, vol. 23, p. 259. Oxford University Press.Google Scholar
Saha, A., Basu, S. & Kumar, R. 2012 Scaling analysis: equivalence of convective and radiative heating of levitated droplet. Appl. Phys. Lett. 100 (20), 204104.CrossRefGoogle Scholar
Saha, A., Basu, S., Suryanarayana, C. & Kumar, R. 2010 Experimental analysis of thermo-physical processes in acoustically levitated heated droplets. Intl J. Heat Mass Transfer 53 (25–26), 56635674.CrossRefGoogle Scholar
Sazhin, S.S., Rybdylova, O., Crua, C., Heikal, M., Ismael, M.A., Nissar, Z. & Aziz, A.R.B. 2019 A simple model for puffing/micro-explosions in water-fuel emulsion droplets. Intl J. Heat Mass Transfer 131, 815821.CrossRefGoogle Scholar
Scheludko, A., Platikanov, D. & Manev, E. 1965 Disjoining pressure in thin liquid films and the electro-magnetic retardation effect of the molecule dispersion interactions. Discuss. Faraday Soc. 40, 253265.CrossRefGoogle Scholar
Segawa, D., Yamasaki, H., Kadota, T., Tanaka, H., Enomoto, H. & Tsue, M. 2000 Water-coalescence in an oil-in-water emulsion droplet burning under microgravity. Proc. Combust. Inst. 28 (1), 985990.CrossRefGoogle Scholar
Sharma, A. & Reiter, G. 1996 Instability of thin polymer films on coated substrates: rupture, dewetting, and drop formation. J. Colloid Interface Sci. 178 (2), 383399.CrossRefGoogle Scholar
Shinjo, J. & Xia, J. 2017 Combustion characteristics of a single decane/ethanol emulsion droplet and a droplet group under puffing conditions. Proc. Combust. Inst. 36 (2), 25132521.CrossRefGoogle Scholar
Sobac, B., Larbi, Z., Colinet, P. & Haut, B. 2019 Mathematical modeling of the drying of a spherical colloidal drop. Colloids Surf. A: Physicochem. Engng Aspects 576, 110122.CrossRefGoogle Scholar
Soltani-Kordshuli, F. & Eslamian, M. 2017 Impact dynamics and deposition of pristine and graphene-doped PEDOT: PSS polymeric droplets on stationary and vibrating substrates. Exp. Therm. Fluid Sci. 89, 238248.CrossRefGoogle Scholar
Stafford, C.M. et al. 2004 A buckling-based metrology for measuring the elastic moduli of polymeric thin films. Nat. Mater. 3 (8), 545550.CrossRefGoogle ScholarPubMed
Stunda-Zujeva, A., Irbe, Z. & Berzina-Cimdina, L. 2017 Controlling the morphology of ceramic and composite powders obtained via spray drying–a review. Ceram. Intl 43 (15), 1154311551.CrossRefGoogle Scholar
Swinscow, T.D.V. & Campbell, M.J. 1997 Correlation and Regression. Statistics at Square One. BMJ publishing group.Google Scholar
Tanimoto, D. & Shinjo, J. 2019 Numerical simulation of secondary atomization of an emulsion fuel droplet due to puffing: dynamics of wall interaction of a sessile droplet and comparison with a free droplet. Fuel 252, 475487.CrossRefGoogle Scholar
Thaker, S.M., Mahanwar, P.A., Patil, V.V. & Thorat, B.N. 2010 Synthesis and spray drying of water-redispersible polymer. Dry. Technol. 28 (5), 669676.Google Scholar
Theofanous, T.G., Mitkin, V.V. & Ng, C.L. 2013 The physics of aerobreakup. III. Viscoelastic liquids. Phys. Fluids 25 (3), 032101.Google Scholar
Vehring, R. 2008 Pharmaceutical particle engineering via spray drying. Pharm. Res. 25 (5), 9991022.CrossRefGoogle ScholarPubMed
Villermaux, E. & Clanet, C. 2002 Life of a flapping liquid sheet. J. Fluid Mech. 462, 341363.CrossRefGoogle Scholar
Wilms, J. 2005 Evaporation of Multicomponent Droplets. PhD Thesis.Google Scholar
Xiong, B., Loss, R.D., Shields, D., Pawlik, T., Hochreiter, R., Zydney, A.L. & Kumar, M. 2018 Polyacrylamide degradation and its implications in environmental systems. NPJ Clean Water 1 (1), 17.CrossRefGoogle Scholar
Yang, T.H. 2008 Recent applications of polyacrylamide as biomaterials. Recent Pat. Mater. Sci. 1 (1), 2940.CrossRefGoogle Scholar
Zhu, G.P., Ong, K.S., Chong, K.S.L., Yao, J.F., Huang, H.L. & Duan, F. 2019 Evaporative characteristics of sessile nanofluid droplet on micro-structured heated surface. Electrophoresis 40 (6), 845850.CrossRefGoogle ScholarPubMed

Gannena et al. supplementary movie 1

Symmetric bubble growth and buckling.

Download Gannena et al. supplementary movie 1(Video)
Video 753.1 KB

Gannena et al. supplementary movie 2

Asymmetric bubble growth, rupture and catastrophic breakup of the droplet.

Download Gannena et al. supplementary movie 2(Video)
Video 395.3 KB

Gannena et al. supplementary movie 3

Solidification of polymeric membrane during evaporation.

Download Gannena et al. supplementary movie 3(Video)
Video 212.7 KB

Gannena et al. supplementary movie 4

Stable sheet fragmentation of droplet

Download Gannena et al. supplementary movie 4(Video)
Video 872.1 KB

Gannena et al. supplementary movie 5

Unstable sheet fragmentation of droplet

Download Gannena et al. supplementary movie 5(Video)
Video 679.4 KB
Supplementary material: File

Gannena et al. supplementary material

Supplementary data

Download Gannena et al. supplementary material(File)
File 3.4 MB