Hostname: page-component-78c5997874-s2hrs Total loading time: 0 Render date: 2024-11-13T01:39:23.710Z Has data issue: false hasContentIssue false

Chaotic orbits of tumbling ellipsoids

Published online by Cambridge University Press:  21 September 2020

Erich Essmann
Affiliation:
Institute for Multiscale Thermofluids, School of Engineering, The University of Edinburgh, EdinburghEH9 3FB, UK
Pei Shui
Affiliation:
Institute of Smart City Research, University of Science and Technology of China, Wuhu241000, PR China
Stéphane Popinet
Affiliation:
Institut Jean le Rond d'Alembert, Sorbonne Université, 75252Paris Cedex 05, France
Stéphane Zaleski
Affiliation:
Institut Jean le Rond d'Alembert, Sorbonne Université, 75252Paris Cedex 05, France
Prashant Valluri*
Affiliation:
Institute for Multiscale Thermofluids, School of Engineering, The University of Edinburgh, EdinburghEH9 3FB, UK
Rama Govindarajan*
Affiliation:
International Centre for Theoretical Sciences, TIFR, Bengaluru560089, India
*
Email addresses for correspondence: prashant.valluri@ed.ac.uk, rama@icts.res.in
Email addresses for correspondence: prashant.valluri@ed.ac.uk, rama@icts.res.in

Abstract

Orbits tracked by ellipsoids immersed in inviscid and viscous environments are studied by means of Kirchhoff's equations and high resolution numerical simulations using a variant of the immersed boundary method. We explore the consequences of Kozlov and Onishchenko's theorem of non-integrability of Kirchhoff's equations to show how the fraction of phase space in chaotic orbits is sensitively determined by the body shape, fluid/solid density ratio and the fraction of initial energy in rotational motion. We show how the added mass tensor of the system is an important player in both viscous and inviscid flow, in causing chaos in a triaxial ellipsoid while acting to suppress it in a spheroid. We identify a new integral of motion for a spheroid in inviscid fluid: one component of the generalised angular momentum. A spheroid, which can never execute chaotic dynamics in inviscid flow, is shown to display chaos in viscous flow due to irregular vortex shedding. But the dynamics of the spheroid is restricted whether in viscous or in inviscid flow, unlike in the triaxial ellipsoid, due to our extra integral of motion.

Type
JFM Papers
Copyright
© The Author(s), 2020. Published by Cambridge University Press

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Aref, H. & Jones, S. W. 1993 Chaotic motion of a solid through ideal fluid. Phys. Fluids A 5 (12), 30263028.CrossRefGoogle Scholar
Auguste, F., Magnaudet, J. & Fabre, D. 2013 Falling styles of disks. J. Fluid Mech. 719, 388405.CrossRefGoogle Scholar
Cencini, M., Cecconi, F. & Vulpiani, A. 2010 Chaos: From Simple Models to Complex Systems, 1st edn.World Scientific.Google Scholar
Chorin, J. A. 1967 A numerical method for solving incompressible viscous flow problems. J. Comput. Phys. 2 (1), 1216.CrossRefGoogle Scholar
Clift, R., Grace, J. R. & Weber, M. E. 1978 Bubbles, Drops, and Particles, 1st edn.Academic Press.Google Scholar
Crapper, M., Duursma, G., Robertson, C. & Wong, S. 2007 EDEM-FLUENT investigation of bubble-tube interactions in gas-fluidized beds. In Proceedings of the 6th International Conference in Multiphase Flows (ed. Sommerfeld, M.).Google Scholar
DeZeeuw, D. & Powell, K. G. 1993 An adaptively refined Cartesian mesh solver for the Euler equations. J. Comput. Phys. 104 (1), 5668.CrossRefGoogle Scholar
Dragović, V. & Gajić, B. 2012 On the cases of Kirchhoff and Chaplygin of the Kirchhoff equations. Regular Chaotic Dyn. 17 (5), 431438.CrossRefGoogle Scholar
Drake, T. G. & Calantoni, J. 2001 Discrete particle model for sheet flow sediment transport in the nearshore. J. Geophys. Res. 106 (C9), 1985919868.CrossRefGoogle Scholar
Dysthe, D. K., Renard, F., Porcheron, F. & Rousseau, B. 2002 Fluid in mineral interfaces—molecular simulations of structure and diffusion. Geophys. Res. Lett. 29 (7), 13-113-4.CrossRefGoogle Scholar
Eckmann, J. P., Oliffson Kamphorst, S. & Ruelle, D. 1987 Recurrence plots of dynamical systems. Europhys. Lett. 4 (91), 973977.CrossRefGoogle Scholar
Einarsson, J., Candelier, F., Lundell, F., Angilella, J. R. & Mehlig, B. 2015 Rotation of a spheroid in a simple shear at small Reynolds number. Phys. Fluids 27 (6), 063301.CrossRefGoogle Scholar
Holmes, P., Jenkins, J. & Leonard, N. E. 1998 Dynamics of the Kirchhoff equations I: coincident centers of gravity and buoyancy. Physica D 118 (3–4), 311342.CrossRefGoogle Scholar
Ingram, D. M., Causon, D. M. & Mingham, C. G. 2003 Developments in Cartesian cut cell methods. Maths Comput. Simul. 61 (3–6), 561572.CrossRefGoogle Scholar
Jeffery, G. B. 1922 The motion of ellipsoidal particles immersed in a viscous fluid. Proc. R. Soc. Lond. A 102 (715), 161179.Google Scholar
Kirchhoff, G. 1876 Vorlesungen über mathematische Physik. B.G. Teubner.Google Scholar
Korotkin, A. I. 2009 Added Masses of Ship Structures, 1st edn, vol. 88. Springer.CrossRefGoogle Scholar
Kozlov, V. V. & Onishchenko, D. A. 1982 Nonintegrability of Kirchhoff's equations. Sov. Maths Dokl. 26 (2), 495498.Google Scholar
Kuipers, J. B. 1999 Quaternions and Rotation Sequences: A Primer with Applications to Orbits, Aerospace, and Virtual Reality. Princeton University.CrossRefGoogle Scholar
Lamb, H. 1945 Hydrodynamics. Dover Publications.Google Scholar
Landau, L. D. & Lifshitz, E. M. 1969 Mechanics, 2nd edn. Pergamon.Google Scholar
Limacher, E., Morton, C. & Wood, D. 2018 Generalized derivation of the added-mass and circulatory forces for viscous flows. Phys. Rev. Fluids 3 (1), 014701.CrossRefGoogle Scholar
Marwan, N. 2008 A historical review of recurrence plots. Eur. Phys. J. Spec. Top. 164 (1), 312.CrossRefGoogle Scholar
Marwan, N., Carmen Romano, M., Thiel, M. & Kurths, J. 2007 Recurrence plots for the analysis of complex systems. Phys. Rep. 438 (5–6), 237329.CrossRefGoogle Scholar
Masella, J. M., Tran, Q. H., Ferre, D. & Pauchon, C. 1998 Transient simulation of two-phase flows in pipes. Intl J. Multiphase Flow 24 (5), 739755.CrossRefGoogle Scholar
Milne-Thomson, L. M. 1968 Theoretical Hydrodynamics, 5th edn. Macmillan.CrossRefGoogle Scholar
Mordant, N. & Pinton, J. F. 2000 Velocity measurement of a settling sphere. Eur. Phys. J. B 18 (2), 343352.CrossRefGoogle Scholar
Nanayama, F., Satake, K., Furukawa, R., Shimokawa, K., Atwater, B. F., Shigeno, K. & Yamaki, S. 2003 Unusually large earthquakes inferred from tsunami deposits along the Kuril trench. Nature 424 (6949), 660663.CrossRefGoogle ScholarPubMed
Popinet, S. 2003 Gerris: a tree-based adaptive solver for the incompressible Euler equations in complex geometries. J. Comput. Phys. 190 (2), 572600.CrossRefGoogle Scholar
Rosén, T. 2017 Chaotic rotation of a spheroidal particle in simple shear flow. Chaos 27 (6), 63112.CrossRefGoogle ScholarPubMed
Samet, H. 1990 Applications of Spatial Data Structures: Computer Graphics, Image Processing, and GIS. Addison-Wesley.Google Scholar
Shui, P., Valluri, P., Popinet, S. & Govindarajan, R. 2015 Direct numerical simulation study of hydrodynamic interactions between immersed solids and wall during flow. In Procedia IUTAM (ed. K. C. Sahu), vol. 15, pp. 150–157. Elsevier.CrossRefGoogle Scholar
Smith, R. 2005 Open Dynamics Engine. Available at: https://www.ode.org/.Google Scholar
Taylor, G. I. 1923 Experiments on the motion of solid bodies in rotating fluids. Proc. R. Soc. Lond. A 104 (725), 213218.Google Scholar
Udaykumar, H. S., Shyy, W. & Rao, M. M. 1996 ELAFINT: a mixed Eulerian–Lagrangian method for fluid flows with complex and moving boundaries. Intl J. Numer. Methods Fluids 22 (8), 691712.3.0.CO;2-U>CrossRefGoogle Scholar
Wachs, A. 2019 Particle-scale computational approaches to model dry and saturated granular flows of non-Brownian, non-cohesive, and non-spherical rigid bodies. Acta Mech. 230 (6), 19191980.CrossRefGoogle Scholar
Yarin, A. L., Gottlieb, O. & Roisman, I. V. 1997 Chaotic rotation of triaxial ellipsoids in simple shear flow. J. Fluid Mech. 340, 83100.CrossRefGoogle Scholar