Hostname: page-component-6bb9c88b65-kzqxb Total loading time: 0 Render date: 2025-07-18T01:47:36.835Z Has data issue: false hasContentIssue false

Chimney instability of rotating Leidenfrost drops

Published online by Cambridge University Press:  17 July 2025

Chen Ma
Affiliation:
Department of Engineering Mechanics, AML, Tsinghua University, 100084 Beijing, PR China Centre for Nano and Micro Mechanics, Tsinghua University, 100084 Beijing, PR China
Cunjing Lv*
Affiliation:
Department of Engineering Mechanics, AML, Tsinghua University, 100084 Beijing, PR China Centre for Nano and Micro Mechanics, Tsinghua University, 100084 Beijing, PR China
*
Corresponding author: Cunjing Lv, cunjinglv@tsinghua.edu.cn

Abstract

The Leidenfrost effect occurs when drops are deposited on a highly superheated solid surface, creating a thin vapour film through rapid evaporation that levitates the drops. For drop with a radius exceeding a critical value, a vapour bubble forms and bursts from its bottom centre, a phenomenon known as chimney instability. Despite extensive investigation, the impact of Leidenfrost drop’s rotation on its chimney instability has remained unexplored. This study addresses this gap by providing both numerical and approximate solutions to the theoretical models. We identify two distinct regimes where either gravitational force or centrifugal force is the primary driver of chimney instability. These regimes are characterised by a non-dimensional rotation number, Ro, which represents the ratio between centrifugal force and gravitational force. Our findings reveal clear scaling laws that relate the critical geometrical parameters (radius, volume and height of the drop) for chimney instability to Ro, demonstrating that rotation can induce chimney instability in smaller drops. The scaling laws are elucidated through pressure perturbation analyses under a virtual perturbation to the drop profile at the critical state for chimney instability. Additionally, by varying the evaporation number $Ev$, we demonstrate that while increased superheat reduces the critical radius in the absence of rotation, the scaling laws related to Ro for a rotating drop remain unaffected. Building on these insights, we present a master curve in a simplified form that accurately predicts the critical state for chimney instability under various angular velocities, gravitational accelerations and superheat conditions.

Information

Type
JFM Papers
Copyright
© The Author(s), 2025. Published by Cambridge University Press

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Article purchase

Temporarily unavailable

References

Agrawal, P., Wells, G.G., Ledesma-Aguilar, R., McHale, G., Buchoux, A., Stokes, A. & Sefiane, K. 2019 Leidenfrost heat engine: sustained rotation of levitating rotors on turbine-inspired substrates. Appl. Energy 240, 399408.10.1016/j.apenergy.2019.02.034CrossRefGoogle Scholar
Agrawal, P., Wells, G.G., Ledesma-Aguilar, R., McHale, G. & Sefiane, K. 2021 Beyond Leidenfrost levitation: a thin-film boiling engine for controlled power generation. Appl. Energy 287, 116556.CrossRefGoogle Scholar
Álvarez-Lacalle, E., Ortín, J. & Casademunt, J. 2004 Nonlinear Saffman–Taylor instability. Phys. Rev. Lett. 92 (5), 054501.10.1103/PhysRevLett.92.054501CrossRefGoogle ScholarPubMed
Biance, A.-L., Clanet, C. & Quéré, D. 2003 Leidenfrost drops. Phys. Fluids 15 (6), 16321637.10.1063/1.1572161CrossRefGoogle Scholar
Bostwick, J.B. & Steen, P.H. 2015 Stability of constrained capillary surfaces. Annu. Rev. Fluid Mech. 47 (1), 539568.10.1146/annurev-fluid-010814-013626CrossRefGoogle Scholar
Bouillant, A., Cohen, C., Clanet, C. & Quéré, D. 2021 a Self-excitation of Leidenfrost drops and consequences on their stability. Proc. Natl Acad. Sci. USA 118 (26), e2021691118.10.1073/pnas.2021691118CrossRefGoogle ScholarPubMed
Bouillant, A., Lafoux, B., Clanet, C. & Quéré, D. 2021 b Thermophobic Leidenfrost. Soft Matt. 17 (39), 88058809.CrossRefGoogle ScholarPubMed
Bouillant, A., Mouterde, T., Bourrianne, P., Clanet, C. & Quéré, D. 2018 a Symmetry breaking in Leidenfrost flows. Phys. Rev. Fluids 3 (10), 100502.CrossRefGoogle Scholar
Bouillant, A., Mouterde, T., Bourrianne, P., Lagarde, A., Clanet, C. & Quéré, D. 2018 b Leidenfrost wheels. Nat. Phys. 14 (12), 11881192.10.1038/s41567-018-0275-9CrossRefGoogle Scholar
Bourrianne, P., Lv, C. & Quéré, D. 2019 The cold Leidenfrost regime. Sci. Adv. 5 (6), eaaw0304.CrossRefGoogle ScholarPubMed
Brown, R.A., Scriven, L.E. & Lighthill, M.J. 1980 The shape and stability of rotating liquid drops. Proc. R. Soc. Lond. A: Math. Phys. Sci. 371 (1746), 331357.Google Scholar
Burton, J.C., Sharpe, A.L., van der Veen, R.C.A., Franco, A. & Nagel, S.R. 2012 Geometry of the vapor layer under a Leidenfrost drop. Phys. Rev. Lett. 109 (7), 074301.Google Scholar
Celestini, F., Frisch, T., Cohen, A., Raufaste, C., Duchemin, L. & Pomeau, Y. 2014 Two dimensional Leidenfrost droplets in a Hele–Shaw cell. Phys. Fluids 26 (3), 032103.10.1063/1.4867163CrossRefGoogle Scholar
Chakraborty, I., Chubynsky, M.V. & Sprittles, J.E. 2022 Computational modelling of Leidenfrost drops. J. Fluid Mech. 936, A12.10.1017/jfm.2022.66CrossRefGoogle Scholar
Dangla, R., Kayi, S.C. & Baroud, C.N. 2013 Droplet microfluidics driven by gradients of confinement. Proc. Natl Acad. Sci. USA 110 (3), 853858.10.1073/pnas.1209186110CrossRefGoogle ScholarPubMed
Duchemin, L., Lister, J.R. & Lange, U. 2005 Static shapes of levitated viscous drops. J. Fluid Mech. 533, 161170.CrossRefGoogle Scholar
Dupeux, G., Le Merrer, M., Clanet, C. & Quéré, D. 2011 Trapping Leidenfrost drops with crenelations. Phys. Rev. Lett. 107 (11), 114503.CrossRefGoogle ScholarPubMed
Edalatpour, M., Colón, C.L. & Boreyko, J.B. 2023 Ice quenching for sustained nucleate boiling at large superheats. Chem 9 (7), 19101928.10.1016/j.chempr.2023.03.010CrossRefGoogle Scholar
de Gennes, P.-G., Brochard-Wyart, F. & Quere, D. 2004 Capillarity and Wetting Phenomena: Drops, Bubbles, Pearls, Waves. Springer.10.1007/978-0-387-21656-0CrossRefGoogle Scholar
Gutierrez-Prieto, E., Gomez, M. & Reis, P.M. 2024 Harnessing centrifugal and Euler forces for tunable buckling of a rotating elastica. Extreme Mech. Lett. 72, 102246.10.1016/j.eml.2024.102246CrossRefGoogle Scholar
Hidalgo-Caballero, S., Escobar-Ortega, Y. & Pacheco-Vázquez, F. 2016 Leidenfrost phenomenon on conical surfaces. Phys. Rev. Fluids 1 (5), 051902.10.1103/PhysRevFluids.1.051902CrossRefGoogle Scholar
Jiang, M et al. 2022 Inhibiting the Leidenfrost effect above $1000^{\,\circ}$ C for sustained thermal cooling. Nature 601 (7894), 568572.10.1038/s41586-021-04307-3CrossRefGoogle Scholar
Lagubeau, G., Le Merrer, M., Clanet, C. & Quéré, D. 2011 Leidenfrost on a ratchet. Nat. Phys. 7 (5), 395398.Google Scholar
Langbein, D.W. 2002 Capillary surfaces: shape—stability—dynamics. In Particular under Weightlessness, vol. 178. Springer Science & Business Media.Google Scholar
Leidenfrost, J.G. 1756 De Aquae Communis Nonnullis Qualitatibus Tractatus. Ovenius.Google Scholar
Li, A., Li, H., Lyu, S., Zhao, Z., Xue, L., Li, Z., Li, K., Li, M., Sun, C. & Song, Y. 2023 Tailoring vapor film beneath a Leidenfrost drop. Nat. Commun. 14 (1), 2646.10.1038/s41467-023-38366-zCrossRefGoogle ScholarPubMed
Liao, L. & Hill, R.J.A. 2017 Shapes and fissility of highly charged and rapidly rotating levitated liquid drops. Phys. Rev. Lett. 119 (11), 114501.10.1103/PhysRevLett.119.114501CrossRefGoogle ScholarPubMed
van Limbeek, M.A.J., Sobac, B., Rednikov, A., Colinet, P. & Snoeijer, J.H. 2019 Asymptotic theory for a Leidenfrost drop on a liquid pool. J. Fluid Mech. 863, 11571189.10.1017/jfm.2018.1025CrossRefGoogle Scholar
Lister, J.R., Thompson, A.B., Perriot, A. & Duchemin, L. 2008 Shape and stability of axisymmetric levitated viscous drops. J. Fluid Mech. 617, 167185.CrossRefGoogle Scholar
Lv, C. & Hardt, S. 2021 Wetting of a liquid annulus in a capillary tube. Soft Matt. 17 (7), 17561772.Google Scholar
Lv, C., Zhang, B., Shi, S. & Hao, P. 2020 Effects of geometric confinement on zero-gravity droplets between two parallel planes. Langmuir 36 (43), 1283812848.10.1021/acs.langmuir.0c01948CrossRefGoogle ScholarPubMed
Maquet, L., Brandenbourger, M., Sobac, B., Biance, A.L., Colinet, P. & Dorbolo, S. 2015 Leidenfrost drops: effect of gravity. Europhys. Lett. 110 (2), 24001.10.1209/0295-5075/110/24001CrossRefGoogle Scholar
Maquet, L., Sobac, B., Darbois-Texier, B., Duchesne, A., Brandenbourger, M., Rednikov, A., Colinet, P. & Dorbolo, S. 2016 Leidenfrost drops on a heated liquid pool. Phys. Rev. Fluids 1 (5), 053902.10.1103/PhysRevFluids.1.053902CrossRefGoogle Scholar
Park, C.W. & Homsy, G.M. 1984 Two-phase displacement in Hele Shaw cells: theory. J. Fluid Mech. 139, 291308.10.1017/S0022112084000367CrossRefGoogle Scholar
Piroird, K., Clanet, C. & Quéré, D. 2012 Magnetic control of Leidenfrost drops. Phys. Rev. E 85 (5), 056311.10.1103/PhysRevE.85.056311CrossRefGoogle ScholarPubMed
Quéré, D. 2013 Leidenfrost dynamics. Annu. Rev. Fluid Mech. 45 (1), 197215.Google Scholar
Roman, B., Gay, C. & Clanet, C. 2020 Pendulums, drops and rods: a physical analogy. arXiv:2006.02742.Google Scholar
Singh, S.K. & Sharma, D. 2021 Review of pool and flow boiling heat transfer enhancement through surface modification. Intl J. Heat Mass Transfer 181, 122020.Google Scholar
Snoeijer, J.H., Brunet, P., Eggers, J. 2009 Maximum size of drops levitated by an air cushion. Phys. Rev. E 79 (3), 036307.10.1103/PhysRevE.79.036307CrossRefGoogle Scholar
Sobac, B., Rednikov, A., Dorbolo, S. & Colinet, P. 2014 Leidenfrost effect: accurate drop shape modeling and refined scaling laws. Phys. Rev. E 90 (5), 053011.Google ScholarPubMed
Sobac, B., Rednikov, A., Dorbolo, S. & Colinet, P. 2017 Self-propelled Leidenfrost drops on a thermal gradient: a theoretical study. Phys. Fluids 29 (8), 082101.10.1063/1.4990840CrossRefGoogle Scholar
Soto, D., Lagubeau, G., Clanet, C. & Quéré, D. 2016 Surfing on a herringbone. Phys. Rev. Fluids 1 (1), 013902.10.1103/PhysRevFluids.1.013902CrossRefGoogle Scholar
Soto, D., de Maleprade, H., Clanet, C. & Quéré, D. 2017 Air-levitated platelets: from take off to motion. J. Fluid Mech. 814, 535546.Google Scholar
Struik, D.J. 2012 Lectures on Classical Differential Geometry. Courier Corporation.Google Scholar
Wakata, Y., Zhu, N., Chen, X., Lyu, S., Lohse, D., Chao, X. & Sun, C. 2023 How roughness and thermal properties of a solid substrate determine the Leidenfrost temperature: experiments and a model. Phys. Rev. Fluids 8 (6), L061601.10.1103/PhysRevFluids.8.L061601CrossRefGoogle Scholar
Wang, T.G., Anilkumar, A.V., Lee, C.P. & Lin, K.C. 1994 Bifurcation of rotating liquid drops: results from USML-1 experiments in space. J. Fluid Mech. 276, 389403.10.1017/S0022112094002612CrossRefGoogle Scholar
Wang, T.G., Trinh, E.H., Croonquist, A.P. & Elleman, D.D. 1986 Shapes of rotating free drops: spacelab experimental results. Phys. Rev. Lett. 56 (5), 452455.Google ScholarPubMed
Yang, J., Li, Y., Wang, D., Fan, Y., Ma, Y., Yu, F., Guo, J., Chen, L., Wang, Z. & Deng, X. 2023 A standing Leidenfrost drop with Sufi whirling. Proc. Natl Acad. Sci. USA 120 (32), e2305567120.10.1073/pnas.2305567120CrossRefGoogle ScholarPubMed
Yariv, E. & Schnitzer, O. 2023 Shape of sessile drops in the large-Bond-number ‘pancake’ limit. J. Fluid Mech. 961, A13.Google Scholar
Yim, E., Bouillant, A., Quere, D. & Gallaire, F. 2022 Leidenfrost flows: instabilities and symmetry breakings. Flow 2, E18.10.1017/flo.2022.5CrossRefGoogle Scholar
Zhang, F. & Zhou, X. 2023 Static and dynamic stability of pendant drops. J. Fluid Mech. 968, A30.10.1017/jfm.2023.553CrossRefGoogle Scholar
Zhao, H., Zhang, B. & Lv, C. 2023 Edge-driven collapse of fluid holes. J. Fluid Mech. 973, A18.10.1017/jfm.2023.753CrossRefGoogle Scholar
Zhao, S. & Tao, J. 2013 Instability of a rotating liquid ring. Phys. Rev. E 88 (3), 033016.10.1103/PhysRevE.88.033016CrossRefGoogle ScholarPubMed
Zhong, L. & Guo, Z. 2017 Effect of surface topography and wettability on the Leidenfrost effect. Nanoscale 9 (19), 62196236.10.1039/C7NR01845BCrossRefGoogle ScholarPubMed