Hostname: page-component-745bb68f8f-mzp66 Total loading time: 0 Render date: 2025-01-28T05:28:28.310Z Has data issue: false hasContentIssue false

Coherent structure detection and the inverse cascade mechanism in two-dimensional Navier–Stokes turbulence

Published online by Cambridge University Press:  19 May 2023

Jiahan Wang
Affiliation:
Zentrum für Astronomie und Astrophysik, ER 3-2, Technische Universität Berlin, Hardenbergstr. 36a, 10623 Berlin, Germany
Jörn Sesterhenn
Affiliation:
Technische Mechanik und Strömungsmechanik, Universität Bayreuth, Universitätsstrasse 30, 95440 Bayreuth, Germany
Wolf-Christian Müller*
Affiliation:
Zentrum für Astronomie und Astrophysik, ER 3-2, Technische Universität Berlin, Hardenbergstr. 36a, 10623 Berlin, Germany
*
Email address for correspondence: wolf-christian.mueller@tu-berlin.de

Abstract

Coherent structures in two-dimensional Navier–Stokes turbulence are ubiquitously observed in nature, experiments and numerical simulations. The present study conducts a comparison between several structure detection schemes based on the Okubo–Weiss criterion, the vorticity magnitude and Lagrangian coherent structures (LCSs), focusing on the inverse cascade in two-dimensional hydrodynamic turbulence. A recently introduced vortex scaling phenomenology (Burgess & Scott, J. Fluid Mech., vol. 811, 2017, pp. 742–756) allows the quantification of the respective thresholds required by these methods based on physical properties of the flow. The resulting improved comparability allows us to identify characteristic relative differences in the detection sensitivity between the employed structure detection techniques. With respect to the inverse cascade of energy, coherent structures contribute, as expected, substantially less to the cross-scale flux than the residual incoherent parts of the flow although the energetically dominant coherent structures lead to an important large-scale deformation of the energy spectrum. This cascade inactivity can be understood by an increased misalignment of strain-rate and subgrid stress tensors within coherent structures. At the same time, the structures exhibit strong and localised nonlinear cross-scale interactions that appear to stabilise them. We quantify and interpret the resulting shape preservation of coherent structures in terms of a multi-scale gradient approach (Eyink, J. Fluid Mech., vol. 549, 2006, pp. 191–214) as the depletion of strain rotation and vorticity gradient stretching whereas the dynamics of the residual fluctuations are consistent with the vortex thinning picture.

Type
JFM Papers
Copyright
© The Author(s), 2023. Published by Cambridge University Press

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Babiano, A., Basdevant, C., Legras, B. & Sadourny, R. 1987 Vorticity and passive-scalar dynamics in two-dimensional turbulence. J. Fluid Mech. 183, 379397.CrossRefGoogle Scholar
Batchelor, G.K. 1969 Computation of the energy spectrum in homogeneous two-dimensional turbulence. Phys. Fluids 12, 233239.CrossRefGoogle Scholar
Benzi, R., Paladin, G., Patarnello, S., Santangelo, P. & Vulpiani, A. 1986 Intermittency and coherent structures in two-dimensional turbulence. J. Phys. A 19, 37713784.CrossRefGoogle Scholar
Benzi, R., Patarnello, S. & Santangelo, P. 1988 Self-similar coherent structures in two-dimensional decaying turbulence. J. Phys. A 21, 12211237.CrossRefGoogle Scholar
Boffetta, G. & Musacchio, S. 2010 Evidence for the double cascade scenario in two-dimensional turbulence. Phys. Rev. E 82, 016307.CrossRefGoogle ScholarPubMed
Borue, V. 1994 Inverse energy cascade in stationary two-dimensional homogeneous turbulence. Phys. Rev. Lett. 72 (10), 14751478.CrossRefGoogle ScholarPubMed
Brunton, S.L. & Rowley, C.W. 2010 Fast computation of finite-time Lyapunov exponent fields for unsteady flows. Chaos 20, 017503.CrossRefGoogle ScholarPubMed
Burgess, B.H. & Scott, R.K. 2017 Scaling theory for vortices in the two-dimensional inverse energy cascade. J. Fluid Mech. 811, 742756.CrossRefGoogle Scholar
Burgess, B.H. & Scott, R.K. 2018 Robustness of vortex populations in the two-dimensional inverse energy cascade. J. Fluid Mech. 850, 844874.CrossRefGoogle Scholar
Canivete Cuissa, J.R. & Steiner, O. 2020 Vortices evolution in the solar atmosphere: a dynamical equation for the swirling strength. Astron. Astrophys. 639, A118.CrossRefGoogle Scholar
Canuto, C., Hussaini, M.Y., Quarteroni, A. & Zang, T.A. 1988 Spectral Methods in Fluid Dynamics. Springer.CrossRefGoogle Scholar
Chakraborty, P., Balachandar, S. & Adrian, R.J. 2005 On the relationships between local vortex identification schemes. J. Fluid Mech. 535, 189214.CrossRefGoogle Scholar
Chen, S., Ecke, R.E., Eyink, G.L., Rivera, M., Wan, M. & Xiao, Z. 2006 Physical mechanism of the two-dimensional inverse energy cascade. Phys. Rev. Lett. 96, 084502.CrossRefGoogle ScholarPubMed
Chong, M.S., Perry, A.E. & Cantwell, B.J. 1990 A general classification of three-dimensional flow fields. Phys. Fluids A 2 (5), 765777.CrossRefGoogle Scholar
Danilov, S. & Gurarie, D. 2001 Forced two-dimensional turbulence in spectral and physical space. Phys. Rev. E 63 (6), 061208.CrossRefGoogle ScholarPubMed
Eyink, G.L. 2006 a Multi-scale gradient expansion of the turbulent stress tensor. J. Fluid Mech. 549, 159190.CrossRefGoogle Scholar
Eyink, G.L. 2006 b A turbulent constitutive law for the two-dimensional inverse energy cascade. J. Fluid Mech. 549, 191214.CrossRefGoogle Scholar
Fang, L. & Ouellette, N.T. 2016 Advection and the efficiency of spectral energy transfer in two-dimensional turbulence. Phys. Rev. Lett. 117 (10), 104501.CrossRefGoogle ScholarPubMed
Farge, M. & Schneider, K. 2015 Wavelet transforms and their applications to MHD and plasma turbulence: a review. J. Plasma Phys. 81(6), 435810602.CrossRefGoogle Scholar
Finn, J. & Apte, S.V. 2013 Integrated computation of finite-time Lyapunov exponent fields during direct numerical simulation of unsteady flows. Chaos 23, 013145.CrossRefGoogle ScholarPubMed
Frisch, U. & Sulem, P.L. 1984 Numerical simulation of the inverse cascade in two-dimensional turbulence. Phys. Fluids 27, 19211923.CrossRefGoogle Scholar
Hadjighasem, A., Farazmand, A., Blazevski, D., Froyland, G. & Haller, G. 2017 A critical comparison of Lagrangian methods for coherent structure detection. Chaos 27, 053104.CrossRefGoogle ScholarPubMed
Haller, G. 2005 An objective definition of a vortex. J. Fluid Mech. 525, 126.CrossRefGoogle Scholar
Haller, G. 2015 Lagrangian coherent structures. Annu. Rev. Fluid Mech. 47, 137162.CrossRefGoogle Scholar
Haller, G., Hadjighasem, A., Farazmand, M. & Huhn, F. 2016 Defining coherent vortices objectively from the vorticity. J. Fluid Mech. 795, 136173.CrossRefGoogle Scholar
Haller, G. & Yuan, G. 2000 Lagrangian coherent structures and mixing in two-dimensional turbulence. Physica D 147, 352370.CrossRefGoogle Scholar
Holmes, P., Lumley, J.L., Berkooz, G. & Rowley, C.W. 2012 Turbulence, Coherent Structures, Dynamical Systems, and Symmetry, 2nd edn. Cambridge University Press.CrossRefGoogle Scholar
Hua, K. 1998 An exact criterion for the stirring properties of nearly two-dimensional turbulence. Physica D 113, 98110.CrossRefGoogle Scholar
Hunt, J.C.R., Wray, A.A. & Moin, P. 1988 Eddies, streams and convergence zones in turbulent flows. In Proceedings of the Summer Program 1988, Center for Turbulence Research, N89-24555, pp. 193–208.Google Scholar
Jeong, J. & Hussain, F. 1995 On the identification of a vortex. J. Fluid Mech. 285, 6994.CrossRefGoogle Scholar
Kelley, D.H., Allshouse, M.R. & Ouellette, N.T. 2013 Lagrangian coherent structures separate dynamically distinct regions in fluid flows. Phys. Rev. E 88, 013017.CrossRefGoogle ScholarPubMed
Kraichnan, R.H. 1967 Inertial ranges in two-dimensional turbulence. Phys. Fluids 10, 14171423.CrossRefGoogle Scholar
Kraichnan, R.H. 1971 Inertial-range transfer in two- and three-dimensional turbulence. J. Fluid Mech. 47, 525535.CrossRefGoogle Scholar
Leith, C.E. 1968 Diffusion approximation for two-dimensional turbulence. Phys. Fluids 11, 671673.CrossRefGoogle Scholar
Leung, S. 2011 An Eulerian approach for computing the finite time Lyapunov exponent. J. Comput. Phys. 230, 35003524.CrossRefGoogle Scholar
Liao, Y. & Ouellette, N.T. 2013 Spatial structure of spectral transport in two-dimensional flow. J. Fluid Mech. 725, 281298.CrossRefGoogle Scholar
Lilly, D.K. 1971 Numerical simulation of developing and decaying two-dimensional turbulence. J. Fluid Mech. 45, 395415.CrossRefGoogle Scholar
Maltrud, M.E. & Vallis, G.K. 1993 Energy and enstrophy transfer in numerical simulations of two-dimensional turbulence. Phys. Fluids A 5 (7), 17601775.CrossRefGoogle Scholar
Ohkitani, K. 1991 Wave number space dynamics of enstrophy cascade in a forced two-dimensional turbulence. Phys. Fluids A 3, 15981611.CrossRefGoogle Scholar
Okamoto, N., Yoshimatsu, K., Schneider, K., Farge, M. & Kaneda, Y. 2007 Coherent vortices in high resolution direct numerical simulation of homogeneous isotropic turbulence: a wavelet viewpoint. Phys. Fluids 19, 115109.CrossRefGoogle Scholar
Okubo, A. 1970 Horizontal dispersion of floatable particles in the vicinity of velocity singularities such as convergences. Deep-Sea Res. Oceanogr. Abstr. 17 (3), 445454.CrossRefGoogle Scholar
Ouellette, N. 2012 On the dynamical role of coherent structures in turbulence. C. R. Phys. 13, 866877.CrossRefGoogle Scholar
Paret, J. & Tabeling, P. 1998 Intermittency in the two-dimensional inverse cascade of energy: experimental observations. Phys. Fluids 10, 31263136.CrossRefGoogle Scholar
Pope, S.B. 2000 Turbulent Flows. Cambridge University Press.CrossRefGoogle Scholar
Rowley, C.W., Mezić, I., Bagheri, S., Schlatter, P. & Henningson, D.S. 2009 Spectral analysis of nonlinear flows. J. Fluid Mech. 641, 115127.CrossRefGoogle Scholar
Rutgers, M.A. 1998 Forced 2D turbulence: experimental evidence of simultaneous inverse energy and forward enstrophy cascades. Phys. Rev. Lett. 81, 22442247.CrossRefGoogle Scholar
Schmid, P.J. 2010 Dynamic mode decomposition of numerical and experimental data. J. Fluid Mech. 656, 528.CrossRefGoogle Scholar
Scott, R.K. 2007 Nonrobustness of the two-dimensional turbulent inverse cascade. Phys. Rev. E 75, 046301.CrossRefGoogle ScholarPubMed
Staniforth, A. & Côté, J. 1991 Semi-Lagrangian integration schemes and their application to environmental flows. Mon. Weath. Rev. 119 (9), 22062223.2.0.CO;2>CrossRefGoogle Scholar
Taira, K., Brunton, S.L., Dawson, S.T.M., Rowley, C.W., Colonius, T., McKeon, B.J., Schmidt, O.T., Gordeyev, S., Theofilis, V. & Ukeiley, L.S. 2017 Modal analysis of fluid flows: an overview. AIAA J. 55, 40134041.CrossRefGoogle Scholar
Towne, A., Schmidt, O.T. & Colonius, T. 2018 Spectral proper orthogonal decomposition and its relationship to dynamic mode decomposition and resolvent analysis. J. Fluid Mech. 847, 821867.CrossRefGoogle Scholar
Vallgren, A. 2011 Infrared Reynolds number dependency of the two-dimensional inverse energy cascade. J. Fluid Mech. 667, 463473.CrossRefGoogle Scholar
Weiss, J. 1991 The dynamics of enstrophy transfer in two-dimensional hydrodynamics. Physica D 48, 273294.CrossRefGoogle Scholar
Xiao, Z., Wan, M., Chen, S. & Eyink, G.L. 2009 Physical mechanism of the inverse energy cascade of two-dimensional turbulence: a numerical investigation. J. Fluid Mech. 619, 144.CrossRefGoogle Scholar
Yadav, N., Cameron, R.H. & Solanki, S.K. 2021 Vortex flow properties in simulations of solar plage region: evidence for their role in chromospheric heating. Astron. Astrophys. 645, A3.CrossRefGoogle Scholar
Yoshimatsu, K., Kondo, Y., Schneider, K., Okamoto, N., Hagiwara, H. & Farge, M. 2009 Wavelet-based coherent vorticity sheet and current sheet extraction from three-dimensional homogeneous magnetohydrodynamic turbulence. Phys. Plasmas 16, 082306.CrossRefGoogle Scholar
Zhou, J., Adrian, R.J., Balachandar, S. & Kendall, T.M. 1999 Mechanisms for generating coherent packets of hairpin vortices in channel flow. J. Fluid Mech. 387, 353396.CrossRefGoogle Scholar