Hostname: page-component-78c5997874-xbtfd Total loading time: 0 Render date: 2024-11-13T04:27:17.916Z Has data issue: false hasContentIssue false

Collective bursting of free-surface bubbles, and the role of surface contamination

Published online by Cambridge University Press:  30 April 2021

B. Néel*
Affiliation:
Department of Mechanical and Aerospace Engineering, Princeton University, Princeton, NJ08544, USA
L. Deike*
Affiliation:
Department of Mechanical and Aerospace Engineering, Princeton University, Princeton, NJ08544, USA High Meadows Environmental Institute, Princeton University, Princeton, NJ08544, USA
*
Email addresses for correspondence: neel.b@princeton.edu, ldeike@princeton.edu
Email addresses for correspondence: neel.b@princeton.edu, ldeike@princeton.edu

Abstract

Air bubbles at the surface of water end their life in a particular way: when bursting, they may eject drops of liquid in the surrounding environment. Many uncertainties remain regarding collective effects of bubbles at the water–air interface, despite extensive efforts to describe the bursting mechanisms, motivated by their critical importance in mass transfers between the ocean and the atmosphere in the production of sea spray aerosols. We investigate the effect of surfactant on the collective dynamics and statistics of air bubbles evolving freely at the surface of water, through an experimental set-up controlling the bulk distribution of bubbles with nearly monodisperse millimetric air bubbles. We observe that for low contamination, bubble coalescence is inevitable and leads to a broad surface size distribution. For higher surfactant concentrations, coalescence at the surface is prevented and bubble lifetime is increased, leading to the formation of rafts with a surface size distribution identical to the bulk distribution. This shows that surface contamination has a first-order influence on the transfer function from bulk size distribution to surface size distribution, an intermediate step which needs to be considered when developing sea spray source function as droplet production by bubble bursting depends on the bubble size. We measure the bursting and merging rates of bubbles as a function of contamination through a complementary freely decaying raft experiment. We propose a cellular automaton model that includes the minimal ingredients to reproduce the experimental results in the statistically stationary configuration: production, coalescence and bursting after a finite lifetime.

Type
JFM Papers
Copyright
© The Author(s), 2021. Published by Cambridge University Press

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Aitken, J. 1880 On dust, fogs, and clouds. Trans. R. Soc. Edinburgh 20, 337368.Google Scholar
Atasi, O., Legendre, D., Haut, B., Zenit, R. & Scheid, B. 2020 Lifetime of surface bubbles in surfactant solutions. Langmuir 36 (27), 77497764.CrossRefGoogle ScholarPubMed
Berny, A., Deike, L., Séon, T. & Popinet, S. 2020 Role of all jet drops in mass transfer from bursting bubbles. Phys. Rev. Fluids 5, 033605.CrossRefGoogle Scholar
Berry, J.D., Neeson, M.J., Dagastine, R.R., Chan, D.Y.C. & Tabor, R.F. 2015 Measurement of surface and interfacial tension using pendant drop tensiometry. J. Colloid Interface Sci. 454, 226237.CrossRefGoogle ScholarPubMed
Blanchard, D.C. 1954 Bursting of bubbles at an air–water interface. Nature 173 (4413), 1048.CrossRefGoogle Scholar
Blanchard, D.C. & Syzdek, L.D. 1988 Film drop production as a function of bubble size. J. Geophys. Res. 93 (C4), 36493654.CrossRefGoogle Scholar
Blanco–Rodríguez, F.J. & Gordillo, J.M. 2020 On the sea spray aerosol originated from bubble bursting jets. J. Fluid Mech. 886, R2.CrossRefGoogle Scholar
Bragg, W.L. & Nye, J.F. 1947 A dynamical model of a crystal structure. Proc. R. Soc. Lond. A 190 (1023), 474481.Google Scholar
Brasz, C.F., Bartlett, C.T., Walls, P.L.L., Flynn, E.G., Yu, Y.E. & Bird, J.C. 2018 Minimum size for the top jet drop from a bursting bubble. Phys. Rev. Fluids 3 (7), 074001.CrossRefGoogle Scholar
Cano-Lozano, J.C., Martínez-Bazán, C., Magnaudet, J. & Tchoufag, J. 2016 Paths and wakes of deformable nearly spheroidal rising bubbles close to the transition to path instability. Phys. Rev. Fluids 1 (5), 053604.CrossRefGoogle Scholar
Cantat, I., Cohen-Addad, S., Elias, F., Graner, F., Höhler, R., Pitois, O., Rouyer, F. & Saint-Jalmes, A. 2013 Foams: Structure and Dynamics. Oxford University Press.CrossRefGoogle Scholar
Champougny, L., Roché, M., Drenckhan, W. & Rio, E. 2016 Life and death of not so ‘bare’ bubbles. Soft Matter 12 (24), 52765284.CrossRefGoogle Scholar
Clift, R., Grace, J.R. & Weber, M.E. 1978 Bubbles, Drops, and Particles. Dover.Google Scholar
Cochran, R.E., Ryder, O.S., Grassian, V.H. & Prather, K.A. 2017 Sea spray aerosol: the chemical link between the oceans, atmosphere, and climate. Accounts Chem. Res. 50 (3), 599604.CrossRefGoogle ScholarPubMed
Collins, D.B., et al. 2014 Direct aerosol chemical composition measurements to evaluate the physicochemical differences between controlled sea spray aerosol generation schemes. Atmos. Meas. Tech. 7 (11), 36673683.CrossRefGoogle Scholar
Coulier, P.-J. 1875 Note sur une nouvelle propriété de l'air. J. Pharm. Chim. 22, 165173.Google Scholar
Culick, F.E.C. 1960 Comments on a ruptured soap film. J. Appl. Phys. 31, 11281129.CrossRefGoogle Scholar
Davidson, J.F. & Schüler, B.O.G. 1960 Bubble formation at an orifice in an inviscid liquid. Trans. Inst. Chem. Engrs 38, 335342.Google Scholar
Deike, L., Ghabache, É., Liger-Belair, G., Das, A.K., Zaleski, S., Popinet, S. & Séon, T. 2018 Dynamics of jets produced by bursting bubbles. Phys. Rev. Fluids 3, 013603.CrossRefGoogle Scholar
Deike, L., Lenain, L. & Melville, W.K. 2017 Air entrainment by breaking waves. Geophys. Res. Lett. 44, 37793787.CrossRefGoogle Scholar
Deike, L. & Melville, W.K. 2018 Gas transfer by breaking waves. Geophys. Res. Lett. 45 (19), 1048210492.CrossRefGoogle Scholar
Deike, L., Melville, W.K. & Popinet, S. 2016 Air entrainment and bubble statistics in breaking waves. J. Fluid Mech. 801, 91129.CrossRefGoogle Scholar
DeMott, P.J., et al. 2016 Sea spray aerosol as a unique source of ice nucleating particles. Proc. Natl Acad. Sci. USA 113 (21), 57975803.CrossRefGoogle ScholarPubMed
Duchemin, L., Popinet, S., Josserand, C. & Zaleski, S. 2002 Jet formation in bubbles bursting at a free surface. Phys. Fluids 14 (9), 30003008.CrossRefGoogle Scholar
Duineveld, P.C. 1995 The rise velocity and shape of bubbles in pure water at high Reynolds number. J. Fluid Mech. 292, 325332.CrossRefGoogle Scholar
Erinin, M.A., Wang, S.D., Liu, R., Towle, D., Liu, X. & Duncan, J.H. 2019 Spray generation by a plunging breaker. Geophys. Res. Lett. 46 (14), 82448251.CrossRefGoogle Scholar
Fainerman, V.B., Lylyk, S.V., Aksenenko, E.V., Makievski, A.V., Petkov, J.T., Yorke, J. & Miller, R. 2009 Adsorption layer characteristics of Triton surfactants. Colloids Surf. A 334 (1), 115.CrossRefGoogle Scholar
Fainerman, V.B., Lylyk, S.V., Aksenenko, E.V., Petkov, J.T., Yorke, J. & Miller, R. 2010 Surface tension isotherms, adsorption dynamics and dilational visco-elasticity of sodium dodecyl sulphate solutions. Colloids Surf. A 354 (1), 815.CrossRefGoogle Scholar
Fairall, C.W., Kepert, J.D. & Holland, G.J. 1994 The effect of sea spray on surface energy transports over the ocean. Global Atmos. Ocean Syst. 2, 121142.Google Scholar
Franklin, B. 1774 Of the stilling of waves by means of oil. Phil. Trans. 64, 445460.Google Scholar
Frossard, A.A., et al. 2019 Marine aerosol production via detrainment of bubble plumes generated in natural seawater with a forced-air venturi. J. Geophys. Res. 124 (20), 1093110950.CrossRefGoogle Scholar
Gañán-Calvo, A.M. 2017 Revision of bubble bursting: universal scaling laws of top jet drop size and speed. Phys. Rev. Lett. 119 (20), 204502.CrossRefGoogle ScholarPubMed
Garrett, W.D. 1967 Stabilization of air bubbles at the air-sea interface by surface-active material. Deep-Sea Res. 14 (6), 661672.Google Scholar
Ghabache, É., Antkowiak, A., Josserand, C. & Séon, T. 2014 On the physics of fizziness: how bubble bursting controls droplets ejection. Phys. Fluids 26, 121701.CrossRefGoogle Scholar
Ghabache, É., Liger-Belair, G., Antkowiak, A. & Séon, T. 2016 Evaporation of droplets in a Champagne wine aerosol. Sci. Rep. 6, 25148.CrossRefGoogle Scholar
Gonnermann, H.M. & Manga, M. 2007 The fluid mechanics inside a volcano. Annu. Rev. Fluid Mech. 39 (1), 321356.CrossRefGoogle Scholar
Jurin, J. 1717 An account of some experiments shown before the royal society; with an enquiry into the cause of the ascent and suspension of water in capillary tubes. Phil. Trans. 30 (351–363), 739747.Google Scholar
Kulkarni, A.A. & Joshi, J.B. 2005 Bubble formation and bubble rise velocity in gas-liquid systems: a review. Ind. Engng Chem. Res. 44 (16), 58735931.CrossRefGoogle Scholar
Lai, C.-Y., Eggers, J. & Deike, L. 2018 Bubble bursting: universal cavity and jet profiles. Phys. Rev. Lett. 121, 144501.CrossRefGoogle ScholarPubMed
Langevin, D. & Rio, E. 2015 Foams and emulsions: coalescence. In Encyclopedia of Surface and Colloid Science, 3rd edn. (ed. P. Somasundaran), pp. 2837–2851. CRC Press.Google Scholar
de Leeuw, G., Andreas, E.L., Anguelova, M.D., Fairall, C.W., Lewis, E.R., O'Dowd, C., Schulz, M. & Schwartz, S.E. 2011 Production flux of sea spray aerosol. Rev. Geophys. 49 (2), 139.CrossRefGoogle Scholar
Lenain, L. & Melville, W.K. 2017 Evidence of sea-state dependence of aerosol concentration in the marine atmospheric boundary layer. J. Phys. Oceanogr. 47 (1), 6984.CrossRefGoogle Scholar
Levich, V.G. 1962 Physicochemical Hydrodynamics, 2nd edn. Prentice-Hall.Google Scholar
Lewis, E.R. & Schwartz, S.E. 2004 Sea Salt Aerosol Production: Mechanisms, Methods, Measurements and Models-A Critical Review, Geophysical Monograph, vol. 152. American Geophysical Union.Google Scholar
Lhuissier, H. & Villermaux, E. 2012 Bursting bubble aerosols. J. Fluid Mech. 696, 544.CrossRefGoogle Scholar
Liu, X. & Duncan, J.H. 2006 An experimental study of surfactant effects on spilling breakers. J. Fluid Mech. 567, 433455.CrossRefGoogle Scholar
Magnaudet, J. & Eames, I. 2000 The motion of high-Reynolds-number bubbles in inhomogeneous flows. Annu. Rev. Fluid Mech. 32 (1), 659708.CrossRefGoogle Scholar
Mason, B.J. 1971 The Physics of Clouds, 2nd edn. Clarendon.Google Scholar
Modini, R.L., Russell, L.M., Deane, G.B. & Stokes, M.D. 2013 Effect of soluble surfactant on bubble persistence and bubble-produced aerosol particles. J. Geophys. Res. 118 (3), 13881400.CrossRefGoogle Scholar
Mougin, G. & Magnaudet, J. 2002 Path instability of a rising bubble. Phys. Rev. Lett. 88 (1), 014502.CrossRefGoogle ScholarPubMed
Mysels, K.J. 1986 Surface tension of solutions of pure sodium dodecyl sulfate. Langmuir 2 (4), 423428.CrossRefGoogle Scholar
Oolman, T.O. & Blanch, H.W. 1986 Bubble coalescence in stagnant liquids. Chem. Engng Commun. 43 (4-6), 237261.CrossRefGoogle Scholar
Paulsen, J.D., Carmigniani, R., Kannan, A., Burton, J.C. & Nagel, S.R. 2014 Coalescence of bubbles and drops in an outer fluid. Nat. Commun. 5, 3182.CrossRefGoogle Scholar
Poulain, S. & Bourouiba, L. 2019 Disease transmission via drops and bubbles. Phys. Today 72 (5), 7071.CrossRefGoogle Scholar
Poulain, S., Villermaux, E. & Bourouiba, L. 2018 Ageing and burst of surface bubbles. J. Fluid Mech. 851, 636671.CrossRefGoogle Scholar
Prather, K.A., et al. 2013 Bringing the ocean into the laboratory to probe the chemical complexity of sea spray aerosol. Proc. Natl Acad. Sci. USA 110 (19), 75507555.CrossRefGoogle ScholarPubMed
Princen, H.M 1963 Shape of a fluid drop at a liquid-liquid interface. J. Colloid Sci. 18 (2), 178195.CrossRefGoogle Scholar
Saffman, P.G. 1956 On the rise of small air bubbles in water. J. Fluid Mech. 1 (3), 249275.CrossRefGoogle Scholar
Shaw, D.B. & Deike, L. 2021 Coalescence of surface bubbles. J. Fluid Mech. (in press).CrossRefGoogle Scholar
Spiel, D.E. 1998 On the births of film drops from bubbles bursting on seawater surfaces. J. Geophys. Res. 103 (C11), 2490724918.CrossRefGoogle Scholar
Stevenson, P. (Ed.) 2012 Foam Engineering: Fundamentals and Applications. Wiley & Sons.CrossRefGoogle Scholar
Taylor, G.I. 1959 The dynamics of thin sheets of fluid. III. Disintegration of fluid sheets. Proc. R. Soc. A 253, 313321.Google Scholar
Toba, Y. 1959 Drop production by bursting of air bubbles on the sea surface (II) theoretical study on the shape of floating bubbles. J. Oceanogr. Soc. Japan 15 (3), 121130.CrossRefGoogle Scholar
Vella, D. & Mahadevan, L. 2005 The “Cheerios effect”. Am. J. Phys. 73 (9), 817825.CrossRefGoogle Scholar
Vergniolle, S. & Brandeis, G. 1996 Strombolian explosions: 1. A large bubble breaking at the surface of a lava column as a source of sound. J. Geophys. Res. 101 (B9), 2043320447.CrossRefGoogle Scholar
Veron, F. 2015 Ocean spray. Annu. Rev. Fluid Mech. 47, 507538.CrossRefGoogle Scholar
Veron, F., Hopkins, C., Harrison, E.L. & Mueller, J.A. 2012 Sea spray spume droplet production in high wind speeds. Geophys. Res. Lett. 39 (16), L16602.CrossRefGoogle Scholar
Villermaux, E. 2007 Fragmentation. Annu. Rev. Fluid Mech. 39, 419446.CrossRefGoogle Scholar
Wang, X., et al. 2017 The role of jet and film drops in controlling the mixing state of submicron sea spray aerosol particles. Proc. Natl Acad. Sci. USA 114 (27), 69786983.CrossRefGoogle ScholarPubMed
Weaire, D.L. & Hutzler, S. 1999 The Physics of Foams. Clarendon.Google Scholar
Wilson, L. 1980 Relationships between pressure, volatile content and ejecta velocity in three types of volcanic explosion. J. Volcanol. Geotherm. Res. 8 (2), 297313.CrossRefGoogle Scholar
Woodcock, A.H., Kientzler, C.F., Arons, A.B. & Blanchard, D.C. 1953 Giant condensation nuclei from bursting bubbles. Nature 172 (4390), 11441145.CrossRefGoogle Scholar
Wurl, O., Wurl, E., Miller, L., Johnson, K. & Vagle, S. 2011 Formation and global distribution of sea-surface microlayers. Biogeosciences 8 (1), 121135.CrossRefGoogle Scholar
Yang, Y.M. & Maa, J.R. 1984 Bubble coalescence in dilute surfactant solutions. J. Colloid Interface Sci. 98 (1), 120125.CrossRefGoogle Scholar
Zenit, R. & Magnaudet, J. 2008 Path instability of rising spheroidal air bubbles: a shape-controlled process. Phys. Fluids 20 (6), 061702.CrossRefGoogle Scholar
Zheng, Q.A., Klemas, V. & Hsu, Y.-H.L. 1983 Laboratory measurement of water surface bubble life time. J. Geophys. Res. 88 (C1), 701706.CrossRefGoogle Scholar