Hostname: page-component-745bb68f8f-lrblm Total loading time: 0 Render date: 2025-01-08T14:22:34.800Z Has data issue: false hasContentIssue false

Comparison of direct numerical simulations with predictions of two-point closures for isotropic turbulence convecting a passive scalar

Published online by Cambridge University Press:  20 April 2006

Jackson R. Herring
Affiliation:
National Center for Atmospheric Research, Boulder, Colorado 80307, U.S.A.
Robert M. Kerr
Affiliation:
National Center for Atmospheric Research, Boulder, Colorado 80307, U.S.A. Present address: NASA, Ames Research Center, M.S. 202A-1, Moffett Field, CA 94035, U.S.A.

Abstract

Results of direct numerical simulations (DNS) for the decay of an initially Gaussian field of turbulence convecting a passive scalar are compared with equivalent results for the direct-interaction approximation (DIA) and the test-field model (TFM). The Taylor microscale Reynolds number Rλ and the equivalent Péclet number Pλ of the comparison ranged from 20–8 and 10–4, respectively. The Prandtl number Pr equals 0·5. Our results show a satisfactory agreement of both theories and numerical simulations, with the DIA giving better overall agreement, especially at small scales. This improved small-scale agreement - which appears to hold up to Rλ ≃ 30 - is related to the relatively long coherence times of the small scales, and to the fact that the TFM, containing as it does a built-in compliance to the fluctuation dissipation theorem, cannot properly cope with this fact. We also give a comparison of results for the velocity skewness with the experiments of Tavoularis, Bennett & Corrsin (1978).

Type
Research Article
Copyright
© 1982 Cambridge University Press

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Corrsin, S. 1951 The decay of isotropic temperature fluctuations in an isotropic turbulence. J. Atmos. Sci. 18, 417423.Google Scholar
Freymuth, P. 1978 Characterization of turbulent temperature ramps by two length scales. Phys. Fluids 21, 2114.Google Scholar
Frisch, U. & Morff, R. H. 1981 Intermittency in non-linear dynamics and singularities for complex times. Phys. Rev. A 23, 26732705.Google Scholar
Herring, J. R. 1969 The statistical theory of thermal convection at large Prandtl number. Phys. Fluids 12, 21062110.Google Scholar
Herring, J. R. 1977 On the statistical theory of two-dimensional topographic turbulence. J. Atmos. Sci. 34, 17311750.Google Scholar
Herring, J. R. & Kraichnan, R. H. 1972 Comparison of some approximations for isotropic turbulence. In Statistical Models and Turbulence (ed. M. Rosenblatt & C. Van Atta), Lecture Notes in Physics, vol. 12, pp. 148194. Springer.
Herring, J. R. & Kraichnan, R. H. 1979 A numerical comparison of velocity-based and strain-based Lagrangian-history turbulence approximations. J. Fluid Mech. 91, 581597.Google Scholar
Herring, J. R., Schertzer, D., Lesieur, M., Newman, G. R., Chollet, J. P. & Larcheveque, M. 1981 A comparative assessment of spectral closures as applied to passive scalar diffusion. Preprint; Submited to J. Fluid Mech.Google Scholar
Kerr, R. M. 1981 Theoretical investigation of a passive scalar such as temperature in isotropic turbulence. Ph.D. thesis; Cooperative Thesis no. 64, Cornell University and National Center for Atmospheric Research.
Kraichnan, R. H. 1958 Irreversible statistical mechanics of incompressible hydrodynamic turbulence. Phys. Rev. 109, 14071422.Google Scholar
Kraichnan, R. H. 1959 The structure of isotropic turbulence at very high Reynolds numbers. J. Fluid Mech. 5, 497543.Google Scholar
Kraichnan, R. H. 1964 Approximations for steady-state isotropic turbulence. Phys. Fluids 7, 11631168.Google Scholar
Kraichnan, R. H. 1965 Lagrangian-history closure approximation for turbulence. Phys. Fluids 8, 575598; erratum 9, 1884.Google Scholar
Kraichnan, R. H. 1968 Small scale structure convected by turbulence. Phys. Fluids 11, 945953.Google Scholar
Kraichnan, R. H. 1971 An almost-Markovian Galilean-invariant turbulence model. J. Fluid Mech. 47, 513524.Google Scholar
Kraichnan, R. H. & Herring, J. R. 1978 A strain-based Lagrangian-history turbulence theory. J. Fluid Mech. 88, 355367.Google Scholar
Larcheveque, M., Chollet, J. P., Herring, J. R., Lesieur, M., Newman, G. R. & Schertzer, D. 1980 Two-point closure applied to a passive scalar in decaying isotropic turbulence. In Turbulent Shear Flows 2 (ed J. S. Bradbury, F. Durst, B. E. Launder, F. W. Schmidt & J. H. Whitelaw), pp. 5066. Springer.
Lesieur, M. & Schertzer, D. 1978 Dynamique des gros tourbillons et décroissance de l’énergie cinétique en turbulence tridimensionelle isotrope à grand nombre de Reynolds. J. Méc. 17, 607646.Google Scholar
Newman, G. R. & Herring, J. R. 1979 A test field model study of a passive scalar in isotropic turbulence. J. Fluid Mech. 94, 163194.Google Scholar
Orszag, S. A. 1974 Statistical theory of turbulence. In Fluid Dynamics: 1973 Les Houches Summer School on Physics (ed. R. Balian & J. L. Penbe), pp. 235374. Gordon & Breach.
Orszag, S. A. & Patterson, G. S. 1972a Numerical simulation of turbulence. In Statistical Models and Turbulence (ed. R. Rosenblatt & C. Van Atta), Lecture Notes in Physics, vol. 12, pp. 127147. Springer.
Orszag, S. A. & Patterson, G. S. 1972b Numerical simulation of three-dimensional homogeneous isotropic turbulence. Phys. Rev. Lett. 28, 7679.Google Scholar
Schirani, E. & Ferziger, J. H. 1982 Simulation of low-Reynolds-number isotropic turbulence including a passive scalar. Submitted to J. Fluid Mech.Google Scholar
Siggia, E. D. 1981 Numerical study of small-scale intermittency in three-dimensional turbulence. J. Fluid Mech. 107, 375406.Google Scholar
Tatsumi, T., Kida, S. & Mizushima, J. 1978 The multiple-scale cumulant expansion for isotropic turbulence. J. Fluid Mech. 85, 97142.Google Scholar
Tavoularis, S., Bennett, J. C. & Corrsin, S. 1978 Velocity-derivative skewness in nearly isotropic turbulence. J. Fluid Mech. 88, 6369.Google Scholar
Van Atta, C. W. 1974 Influence of fluctuations in dissipation rates on some statistical properties of turbulence scalar fields Izv0. Atmos. Ocean. Phys. 10, 712719.Google Scholar
Yeh, T. T. & Van Atta, C. W. 1973 Spectral transfer of scalar and velocity fields in heated-grid turbulence. J. Fluid Mech. 58, 233266.Google Scholar