Hostname: page-component-745bb68f8f-d8cs5 Total loading time: 0 Render date: 2025-01-13T13:36:19.375Z Has data issue: false hasContentIssue false

Complete adiabatic evaporation of highly superheated liquid jets

Published online by Cambridge University Press:  26 April 2006

Th. Kurschat
Affiliation:
Max-Planck-Institut for Strömungsforschung, D-3400 Göttingen, Germany
H. Chaves
Affiliation:
Max-Planck-Institut for Strömungsforschung, D-3400 Göttingen, Germany
G. E. A. Meier
Affiliation:
Max-Planck-Institut for Strömungsforschung, D-3400 Göttingen, Germany

Abstract

A nozzle expansion into a vacuum chamber was used to investigate the evaporation of highly superheated liquid jets. The large molar specific heat of fluids with high molecular complexity — in this case C6F14 — is responsible for the new phenomena reported here. A model was developed to describe the basic physical effects. A cubic equation of state was used to describe the thermodynamic properties of the fluid. The evaporation was modelled as a sonic deflagration followed by an axisymmetric supersonic expansion. As in the case of hypersonic gas jets the final state is reached by a normal shock. For sufficiently high temperatures and expansion ratios a complete adiabatic evaporation of the liquid was found. At even higher temperatures the liquid evaporates completely within a rarefaction discontinuity. The predictions of the model are in good agreement with the experimental results.

Type
Research Article
Copyright
© 1992 Cambridge University Press

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Abbot, M. M. 1973 Cubic equation of state. AIChE J. 19, 596.Google Scholar
Ashkenas, H. & Sherman, F. S. 1967 The structure and utilization of supersonic free jets in low density wind tunnels. In 4th Intl Symp. on Rarefied Gas Dynamics, vol. II (ed. J. H. de Leeuw), pp. 105105. Academic.
Borisov, A. A., Borisov, Al. A., Kutateladze, S. S. & Nakoryakov, V. E. 1983 Rarefaction shock wave near the critical liquid—vapour point. J. Fluid Mech. 126, 59.Google Scholar
Chaves, H. 1980 Verdampfungswellen in retrograden Flüssigkeiten. Diploma thesis, Universität Göttingen; and Rep. 24. MPI for Strömungsforschung.
Chaves, H. 1984 Phasenübergänge and Wellen bei der Entspannung von Fluiden hoher spezifischer Wärme. Mitteilungen aus dem Max-Planck-Institut for Strömungsforschung, Nr. 77.Google Scholar
Chaves, H., Kurschat, T. & Meier, G. E. A. 1990 Evaporation waves in fluids of high molar specific heat. Proc. IUTAM Symp. on Adiabatic Waves in Liquid—Vapor systems (ed. G. E. A. Meier & P. A. Thompson). Springer.
Chaves, H., Lang, H., Meier, G. E. A. & Speckmann, H.-D. 1985 Adiabatic phase transitions and wavesplitting in fluids of high specific heat. In Lecture Notes in Physics, vol. 235, p. 115. Springer.
Dettleff, G., Meier, G. E. A., Speckmann, H. D., Thompson, P. A. & Yoon, C. 1982 Experiments on shock liquefaction. In Proc. 13th Intl Symp. on Shock Tubes and Waves (ed. C. E. Trainorand & J. G. Hall). State University of New York Press.
Dettleff, G., Thompson, P. A., Meier, G. E. A. & Speckmann, H.-D. 1979 An experimental study of liquefaction shock waves. J. Fluid Mech. 95, 279.Google Scholar
Fuchs, H. & Legge, H. 1979 Flow of a water jet into vacuum. Acta Astronautica 6, 1213.Google Scholar
Kurschat, Th., Chaves, H. & Meier, G. E. A. 1991 A simple analytical model for the evaluation of the free-jet Mach-disk location. Phys. Fluids (submitted).Google Scholar
Labuntsov, D. A. & Avdeev, A. A. 1982 Mechanism of flow blockage involving shock boiling of liquid. High Temp. 20, 81.Google Scholar
Lambrakis, K. C. & Thompson, P. A. 1972 Existence of real fluids with negative fundamental derivative. Phys. Fluids 15, 933.Google Scholar
Landau, L. D. & Lifschitz, E. M. 1966 Lehrbuch der Theoretischen Physik, vol. IV, Kap IX and XIV. Akademic-Verlag.
Lienhard, J. H. & Day, J. B. 1970 The breakup of superheated liquid jets. Trans. ASME D: J. Basic Engng 92, 515.Google Scholar
Sidorenko, A. D. 1968 Wave adiabates for media with arbitrary equation of state. Sov. Phys. Dokl. 13, 117.Google Scholar
Sidorenko, A. D. 1982 Wave adiabatic curves for media with arbitrary state equation. Appl. Math. Mech. 46, 241.Google Scholar
Skripov, V. P. 1974 Metastable Liquids. Wiley.
Skripov, V. P., Baydakov, V. G. & Mal', S. A. 1987 ‘Vapour explosion’ in liquid argon or methane discharged through short ducts. Heat Transfer Sov. Res. 19, 133.Google Scholar
Thompson, P. A. & Becker, F. 1979 A one-parameter thermal-caloric corresponding-states model. Chem. Engng Sci. 34, 93.Google Scholar
Thompson, P. A., Carofano, G. C. & Kim, Y.-G. 1986 Shock waves and phase changes in a large-heat-capacity fluid emerging from a tube. J. Fluid Mech. 166, 57.Google Scholar
Thompson, P. A., Chaves, H., Meier, G. E. A., Kim, Y.-G. & Speckmann, H.-D. 1987 Wave splitting in a fluid of large heat capacity. J. Fluid Mech. 185, 385.Google Scholar
Thompson, P. A. & Lambrakis, K. C. 1973 Negative shock waves. J. Fluid Mech. 60, 187.Google Scholar
Thompson, P. A. & Sullivan, D. A. 1975 On the possibility of complete condensation shock waves in retrograde fluids. J. Fluid Mech. 70, 639.Google Scholar