Hostname: page-component-cb9f654ff-w5vf4 Total loading time: 0 Render date: 2025-08-13T14:42:59.747Z Has data issue: false hasContentIssue false

A computational framework for simulating suspensions of phoretic particles

Published online by Cambridge University Press:  30 July 2025

Zhe Gou
Affiliation:
College of Mechanical and Electrical Engineering, Central South University, Changsha, PR China Université Grenoble Alpes, CNRS, LIPhy, Grenoble, France
Chaouqi Misbah
Affiliation:
Université Grenoble Alpes, CNRS, LIPhy, Grenoble, France
Alexander Farutin*
Affiliation:
Université Grenoble Alpes, CNRS, LIPhy, Grenoble, France
*
Corresponding author: Alexander Farutin, alexander.farutin@univ-grenoble-alpes.fr

Abstract

Phoretic particles are often used as a simple model for experimental and theoretical studies of active matter. We develop a computational framework to resolve hydrodynamic and chemical interactions of multiple self-propelling phoretic particles suspended in two-dimensional Stokes flow. The proposed method is precise enough to resolve correctly the subtle transitions between different modes of spontaneous locomotion for a single particle, and fast and versatile enough to study multiparticle dynamics in periodic or confined domains. The particles are modelled as chemically active rigid circles, which can emit or absorb a solute into surrounding fluid. The interaction between particles and solute induces a slip flow on particle surfaces, and the solute is advected by the fluid flow and diffuses with a constant diffusivity. A fast boundary integral method is proposed to solve fluid–structure interaction in Stokes flow. Acceleration of this method is provided by splitting the velocity field due to a set of point forces into a short-range part with singularity and a long-range part which is sufficiently smooth, thanks to an Ewald-like decomposition. An overlapping mesh method is employed for advection–diffusion of the solute with moving boundaries. The idea is to decompose the computational domain into several overlapping subdomains, and body-fitted meshes are used to ensure sharp resolution of boundary conditions. The framework is validated separately for the Stokes problem and the advection–diffusion problem, reaching relatively high order of accuracy. We apply our framework to several practical problems, such as a single particle in a channel and particle suspensions, showing rich sets of behaviours.

Information

Type
JFM Papers
Copyright
© The Author(s), 2025. Published by Cambridge University Press

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Article purchase

Temporarily unavailable

References

Bao, Y., Rachh, M., Keaveny, E.E., Greengard, L. & Donev, A. 2018 A fluctuating boundary integral method for Brownian suspensions. J. Comput. Phys. 374, 10941119.10.1016/j.jcp.2018.08.021CrossRefGoogle Scholar
Chen, Y., Chong, K.L., Liu, L., Verzicco, R. & Lohse, D. 2021 Instabilities driven by diffusiophoretic flow on catalytic surfaces. J. Fluid Mech. 919, A10.10.1017/jfm.2021.370CrossRefGoogle Scholar
Chesshire, G. & Henshaw, W.D. 1990 Composite overlapping meshes for the solution of partial differential equations. J. Comput. Phys. 90 (1), 164.10.1016/0021-9991(90)90196-8CrossRefGoogle Scholar
Crow, J.A. 1993 Quadrature of integrands with a logarithmic singularity. Maths Comput. 60 (201), 297301.10.1090/S0025-5718-1993-1155572-3CrossRefGoogle Scholar
Delmotte, B. & Usabiaga, F.B. 2024 A scalable method to model large suspensions of colloidal phoretic particles with arbitrary shapes. J. Comput. Phys. 518, 113321.10.1016/j.jcp.2024.113321CrossRefGoogle Scholar
Desai, N. & Michelin, S. 2021 Instability and self-propulsion of active droplets along a wall. Phys. Rev. Fluids 6 (11), 114103.10.1103/PhysRevFluids.6.114103CrossRefGoogle Scholar
Desai, N. & Michelin, S. 2022 Steady state propulsion of isotropic active colloids along a wall. Phys. Rev. Fluids 7 (10), 1005013.10.1103/PhysRevFluids.7.100501CrossRefGoogle Scholar
Deserno, M. & Holm, C. 1998 How to mesh up Ewald sums. I. A theoretical and numerical comparison of various particle mesh routines. J. Chem. Phys. 109 (18), 76787693.10.1063/1.477414CrossRefGoogle Scholar
Elfring, G.J. 2015 A note on the reciprocal theorem for the swimming of simple bodies. Phys. Fluids 27 (2), 023101.10.1063/1.4906993CrossRefGoogle Scholar
Essmann, U., Perera, L., Berkowitz, M.L., Darden, T., Lee, H. & Pedersen, L.G. 1995 A smooth particle mesh Ewald method. J. Chem. Phys. 103 (19), 85778593.10.1063/1.470117CrossRefGoogle Scholar
Fadlun, E.A., Verzicco, R., Orlandi, P. & Mohd-Yusof, J. 2000 Combined immersed-boundary finite-difference methods for three-dimensional complex flow simulations. J. Comput. Phys. 161 (1), 3560.10.1006/jcph.2000.6484CrossRefGoogle Scholar
Farutin, A., Rizvi, M.S., Hu, W.F., Lin, T.S., Rafaï, S. & Misbah, C. 2022 A reduced model for a phoretic swimmer. J. Fluid Mech. 952, A6.10.1017/jfm.2022.870CrossRefGoogle Scholar
Fedosov, D.A., Caswell, B. & Karniadakis, G.E. 2010 A multiscale red blood cell model with accurate mechanics, rheology, and dynamics. Biophys. J. 98 (10), 22152225.10.1016/j.bpj.2010.02.002CrossRefGoogle ScholarPubMed
Gao, C., Zhang, P., Marom, G., Deng, Y. & Bluestein, D. 2017 Reducing the effects of compressibility in DPD-based blood flow simulations through severe stenotic microchannels. J. Comput. Phys. 335, 812827.10.1016/j.jcp.2017.01.062CrossRefGoogle Scholar
Goldstein, D., Handler, R. & Sirovich, L. 1993 Modeling a no-slip flow boundary with an external force field. J. Comput. Phys. 105 (2), 354366.10.1006/jcph.1993.1081CrossRefGoogle Scholar
Gou, Z., Zhang, H., Abbasi, M. & Misbah, C. 2021 Red blood cells under flow show maximal atp release for specific hematocrit. Biophys. J. 120 (21), 48194831.10.1016/j.bpj.2021.09.025CrossRefGoogle ScholarPubMed
Guckel, E.K. 1999 Large Scale Simulations of Particulate Systems Using the PME Method. University of Illinois at Urbana-Champaign.Google Scholar
Han, E., Zhu, L., Shaevitz, J.W. & Stone, H.A. 2021 Low-Reynolds-number, biflagellated Quincke swimmers with multiple forms of motion. Proc. Natl. Acad. Sci. USA 118 (29), e2022000118.10.1073/pnas.2022000118CrossRefGoogle ScholarPubMed
Henshaw, W.D. & Schwendeman, D.W. 2006 Moving overlapping grids with adaptive mesh refinement for high-speed reactive and non-reactive flow. J. Comput. Phys. 216 (2), 744779.10.1016/j.jcp.2006.01.005CrossRefGoogle Scholar
Henshaw, W.D. & Schwendeman, D.W. 2008 Parallel computation of three-dimensional flows using overlapping grids with adaptive mesh refinement. J. Comput. Phys. 227 (16), 74697502.10.1016/j.jcp.2008.04.033CrossRefGoogle Scholar
Hernandez-Ortiz, J.P., de Pablo, J.J. & Graham, M.D. 2007 Fast computation of many-particle hydrodynamic and electrostatic interactions in a confined geometry. Phys. Rev. Lett. 98 (14), 140602.10.1103/PhysRevLett.98.140602CrossRefGoogle Scholar
Hokmabad, B.V., Agudo-Canalejo, J., Saha, S., Golestanian, R. & Maass, C.C. 2022 a Chemotactic self-caging in active emulsions. Proc. Natl Acad. Sci. USA 119 (24), e2122269119.10.1073/pnas.2122269119CrossRefGoogle ScholarPubMed
Hokmabad, B.V., Nishide, A., Ramesh, P., Kruger, C. & Maass, C.C. 2022 b Spontaneously rotating clusters of active droplets. Soft Matt. 18 (14), 27312741.10.1039/D1SM01795KCrossRefGoogle ScholarPubMed
Hosseini, S.M. & Feng, J.J. 2009 A particle-based model for the transport of erythrocytes in capillaries. Chem. Engng Sci. 64 (22), 44884497.10.1016/j.ces.2008.11.028CrossRefGoogle Scholar
Hu, W.-F., Lai, M.-C. & Misbah, C. 2018 A coupled immersed boundary and immersed interface method for interfacial flows with soluble surfactant. Comput. Fluids 168, 201215.10.1016/j.compfluid.2018.04.013CrossRefGoogle Scholar
Hu, W.F., Lin, T.S., Rafai, S. & Misbah, C. 2019 Chaotic swimming of phoretic particles. Phys. Rev. Lett. 123 (23), 238004.10.1103/PhysRevLett.123.238004CrossRefGoogle ScholarPubMed
Hu, W.-F., Lin, T.-S., Rafai, S. & Misbah, C. 2022 Spontaneous locomotion of phoretic particles in three dimensions. Phys. Rev. Fluids 7 (3), 034003.10.1103/PhysRevFluids.7.034003CrossRefGoogle Scholar
Huang, J., Hu, Z. & Yong, W.-A. 2016 Second-order curved boundary treatments of the lattice Boltzmann method for convection–diffusion equations. J. Comput. Phys. 310, 2644.10.1016/j.jcp.2016.01.008CrossRefGoogle Scholar
Izri, Z., van der Linden, M.N., Michelin, S. & Dauchot, O. 2014 Self-propulsion of pure water droplets by spontaneous marangoni-stress-driven motion. Phys. Rev. Lett. 113 (24), 248302.10.1103/PhysRevLett.113.248302CrossRefGoogle ScholarPubMed
Izzet, A., Moerman, P.G., Gross, P., Groenewold, J., Hollingsworth, A.D., Bibette, J. & Brujic, J. 2020 Tunable persistent random walk in swimming droplets. Phys. Rev. X 10 (2), 021035.Google Scholar
Jin, C., Vachier, J., Bandyopadhyay, S., Macharashvili, T. & Maass, C.C. 2019 Fine balance of chemotactic and hydrodynamic torques: when microswimmers orbit a pillar just once. Phys. Rev. E 100 (4–1), 040601.10.1103/PhysRevE.100.040601CrossRefGoogle ScholarPubMed
Kohl, R., Corona, E., Cheruvu, V. & Veerapaneni, S. 2023 Fast and accurate solvers for simulating Janus particle suspensions in Stokes flow. Adv. Comput. Math. 49 (4), 45.10.1007/s10444-023-10046-yCrossRefGoogle Scholar
Kumar, A. & Graham, M.D. 2012 Accelerated boundary integral method for multiphase flow in non-periodic geometries. J. Comput. Phys. 231 (20), 66826713.10.1016/j.jcp.2012.05.035CrossRefGoogle Scholar
Lallemand, P. & Luo, L.-S. 2003 Lattice Boltzmann method for moving boundaries. J. Comput. Phys. 184 (2), 406421.10.1016/S0021-9991(02)00022-0CrossRefGoogle Scholar
Li, G. 2022 Swimming dynamics of a self-propelled droplet. J. Fluid Mech. 934, A20.10.1017/jfm.2021.1154CrossRefGoogle Scholar
Li, W., Wu, C., Xiong, Z., Liang, C., Li, Z., Liu, B., Cao, Q., Wang, J., Tang, J. & Li, D. 2022 Self-driven magnetorobots for recyclable and scalable micro/nanoplastic removal from nonmarine waters. Sci. Adv. 8 (45), eade1731.10.1126/sciadv.ade1731CrossRefGoogle ScholarPubMed
Li, Z. & Lai, M.-C. 2001 The immersed interface method for the Navier–Stokes equations with singular forces. J. Comput. Phys. 171 (2), 822842.10.1006/jcph.2001.6813CrossRefGoogle Scholar
Lin, T.-S., Hu, W.-F. & Misbah, C. 2020 A direct Poisson solver in spherical geometry with an application to diffusiophoretic problems. J. Comput. Phys. 409, 109362.10.1016/j.jcp.2020.109362CrossRefGoogle Scholar
Lippera, K., Benzaquen, M. & Michelin, S. 2021 Alignment and scattering of colliding active droplets. Soft Matt. 17 (2), 365375.10.1039/D0SM01285HCrossRefGoogle ScholarPubMed
Lippera, K., Morozov, M., Benzaquen, M. & Michelin, S. 2020 Collisions and rebounds of chemically active droplets. J. Fluid Mech. 886, A17.10.1017/jfm.2019.1055CrossRefGoogle Scholar
Liu, Y., Zhang, L., Wang, X. & Liu, W.K. 2004 Coupling of Navier–Stokes equations with protein molecular dynamics and its application to hemodynamics. Intl J. Numer. Meth. Flow 46 (12), 12371252.10.1002/fld.798CrossRefGoogle Scholar
Ma, K., et al. 2022 Magnetosome-inspired synthesis of soft ferrimagnetic nanoparticles for magnetic tumor targeting. Proc. Natl Acad. Sci. USA 119 (45), e2211228119.10.1073/pnas.2211228119CrossRefGoogle ScholarPubMed
Martín-Roca, J., Ortega, F., Valeriani, C., Rubio, R.G. & Martínez-Pedrero, F. 2023 Magnetic Colloidal Currents Guided On Self-Assembled Colloidal Tracks. Advanced Functional Materials.10.1002/adfm.202306541CrossRefGoogle Scholar
McCorquodale, P., Colella, P. & Johansen, H. 2001 A cartesian grid embedded boundary method for the heat equation on irregular domains. J. Comput. Phys. 173 (2), 620635.10.1006/jcph.2001.6900CrossRefGoogle Scholar
Merrill, B.E. & Peet, Y.T. 2019 Moving overlapping grid methodology of spectral accuracy for incompressible flow solutions around rigid bodies in motion. J. Comput. Phys. 390, 121151.10.1016/j.jcp.2019.01.048CrossRefGoogle Scholar
Michelin, S. 2023 Self-propulsion of chemically active droplets. Annu. Rev. Fluid Mech. 55 (1), 77101.10.1146/annurev-fluid-120720-012204CrossRefGoogle Scholar
Michelin, S. & Lauga, E. 2014 Phoretic self-propulsion at finite Péclet numbers. J. Fluid Mech. 747, 572604.10.1017/jfm.2014.158CrossRefGoogle Scholar
Michelin, S., Lauga, E. & Bartolo, D. 2013 Spontaneous autophoretic motion of isotropic particles. Phys. Fluids 25 (6), 061701.10.1063/1.4810749CrossRefGoogle Scholar
Montenegro-Johnson, T.D., Michelin, S. & Lauga, E. 2015 A regularised singularity approach to phoretic problems. Eur. Phys. J. E Soft Matt. 38 (12), 139.10.1140/epje/i2015-15139-7CrossRefGoogle ScholarPubMed
Noguchi, H., Gompper, G. 2004 Fluid vesicles with viscous membranes in shear flow. Phys. Rev. Lett. 93 (25), 258102.10.1103/PhysRevLett.93.258102CrossRefGoogle ScholarPubMed
Noguchi, H. & Gompper, G. 2005 Shape transitions of fluid vesicles and red blood cells in capillary flows. Proc. Natl Acad. Sci. USA 102 (40), 1415914164.10.1073/pnas.0504243102CrossRefGoogle ScholarPubMed
NVIDIA 2022 cuFFT Library User’s Guide. NVIDIA.Google Scholar
Paxton, W.F., Kistler, K.C., Olmeda, C.C., Sen, A., St. Angelo, S.K., Cao, Y., Mallouk, T.E., Lammert, P.E. & Crespi, V.H. 2004 Catalytic nanomotors: autonomous movement of striped nanorods. J. Am. Chem. Soc. 126 (41), 1342413431.10.1021/ja047697zCrossRefGoogle ScholarPubMed
Peet, Y.T. & Fischer, P.F. 2012 Stability analysis of interface temporal discretization in grid overlapping methods. SIAM J. Numer. Anal. 50 (6), 33753401.10.1137/110831234CrossRefGoogle Scholar
Peskin, C.S. 2002 The immersed boundary method. Acta Numerica 11, 479517.10.1017/S0962492902000077CrossRefGoogle Scholar
Picella, F. & Michelin, S. 2022 Confined self-propulsion of an isotropic active colloid. J. Fluid Mech. 933, A27.10.1017/jfm.2021.1081CrossRefGoogle Scholar
Pozrikidis, C. 1992 Boundary Integral and Singularity Methods for Linearized Viscous Flow. Cambridge University Press.10.1017/CBO9780511624124CrossRefGoogle Scholar
Prewitt, N.C., Belk, D.M. & Shyy, W. 2000 Parallel computing of overset grids for aerodynamic problems with moving objects. Prog. Aerosp. Sci. 36 (2), 117172.10.1016/S0376-0421(99)00013-5CrossRefGoogle Scholar
Rojas-Pérez, F., Delmotte, B. & Michelin, S. 2021 Hydrochemical interactions of phoretic particles: a regularized multipole framework. J. Fluid Mech. 919, A22.10.1017/jfm.2021.387CrossRefGoogle Scholar
Schneiders, L., Günther, C., Meinke, M. & Schröder, W. 2016 An efficient conservative cut-cell method for rigid bodies interacting with viscous compressible flows. J. Comput. Phys. 311, 6286.10.1016/j.jcp.2016.01.026CrossRefGoogle Scholar
Shen, Z.Y., Farutin, A., Thiebaud, M. & Misbah, C. 2017 Interaction and rheology of vesicle suspensions in confined shear flow. Phys. Rev. Fluids 2 (10), 103101.10.1103/PhysRevFluids.2.103101CrossRefGoogle Scholar
Singh, R., Adhikari, R. & Cates, M.E. 2019 Competing chemical and hydrodynamic interactions in autophoretic colloidal suspensions. J. Chem. Phys. 151 (4), 044901.10.1063/1.5090179CrossRefGoogle ScholarPubMed
Sondak, D., Hawley, C., Heng, S., Vinsonhaler, R., Lauga, E. & Thiffeault, J.L. 2016 Can phoretic particles swim in two dimensions? Phys. Rev. E 94 (6-1), 062606.10.1103/PhysRevE.94.062606CrossRefGoogle ScholarPubMed
Stone, H.A. & Samuel, A.D. 1996 Propulsion of microorganisms by surface distortions. Phys. Rev. Lett. 77 (19), 41024104.10.1103/PhysRevLett.77.4102CrossRefGoogle ScholarPubMed
Tanaka, N. & Takano, T. 2011 Microscopic-scale simulation of blood flow using sph method. Intl J. Comput. Meth. 2 (04), 555568.10.1142/S021987620500065XCrossRefGoogle Scholar
Thutupalli, S., Geyer, D., Singh, R., Adhikari, R. & Stone, H.A. 2018 Flow-induced phase separation of active particles is controlled by boundary conditions. Proc. Natl Acad. Sci. USA 115 (21), 54035408.10.1073/pnas.1718807115CrossRefGoogle ScholarPubMed
Wang, X., Gong, X., Sugiyama, K., Takagi, S. & Huang, H. 2020 An immersed boundary method for mass transfer through porous biomembranes under large deformations. J. Comput. Phys. 413, 109444.10.1016/j.jcp.2020.109444CrossRefGoogle Scholar
Xu, Z., Wang, C., He, F., Hao, P. & Zhang, X. 2023 Coarse-grained model of whole blood hemolysis and morphological analysis of erythrocyte population under non-physiological shear stress flow environment. Phys. Fluids 35 (3), 3.Google Scholar
Yan, W. & Shelley, M. 2018 Flexibly imposing periodicity in kernel independent FMM: A multipole-to-local operator approach. J. Comput. Phys. 355, 214232.10.1016/j.jcp.2017.11.012CrossRefGoogle Scholar
Yang, Q., Jiang, M., Picano, F. & Zhu, L. 2024 Shaping active matter from crystalline solids to active turbulence. Nat. Commun. 15 (1), 2874.10.1038/s41467-024-46520-4CrossRefGoogle ScholarPubMed
Zhang, H., Shen, Z., Hogan, B., Barakat, A.I. & Misbah, C. 2018 ATP release by red blood cells under flow: model and simulations. Biophys. J. 115 (11), 22182229.10.1016/j.bpj.2018.09.033CrossRefGoogle ScholarPubMed
Zhang, H.D. & Misbah, C. 2019 Lattice Boltzmann simulation of advection-diffusion of chemicals and applications to blood flow. Comput. Fluids 187, 4659.10.1016/j.compfluid.2019.04.018CrossRefGoogle Scholar
Zhu, G. & Zhu, L. 2023 Self-propulsion of an elliptical phoretic disk emitting solute uniformly. J. Fluid Mech. 974, A57.10.1017/jfm.2023.858CrossRefGoogle Scholar
Zhu, X., Chen, Y., Chong, K.L., Lohse, D. & Verzicco, R. 2024 A boundary condition-enhanced direct-forcing immersed boundary method for simulations of three-dimensional phoretic particles in incompressible flows. J. Comput. Phys. 509, 113028.10.1016/j.jcp.2024.113028CrossRefGoogle Scholar
Ziepke, A., Maryshev, I., Aranson, I.S. & Frey, E. 2022 Multi-scale organization in communicating active matter. Nat. Commun. 13 (1), 6727.10.1038/s41467-022-34484-2CrossRefGoogle ScholarPubMed
Supplementary material: File

Gou et al. supplementary movie

Movie 1: supplementary movie about lattice vibration phase at Pe = 1.6
Download Gou et al. supplementary movie(File)
File 8.9 MB