Hostname: page-component-78c5997874-dh8gc Total loading time: 0 Render date: 2024-11-13T01:31:00.706Z Has data issue: false hasContentIssue false

Continuum theory for rapid cohesive-particle flows: general balance equations and discrete-element-method-based closure of cohesion-specific quantities

Published online by Cambridge University Press:  26 October 2017

Kevin M. Kellogg
Affiliation:
Department of Chemical and Biological Engineering, University of Colorado at Boulder, Boulder, CO 80309, USA
Peiyuan Liu
Affiliation:
Department of Chemical and Biological Engineering, University of Colorado at Boulder, Boulder, CO 80309, USA
Casey Q. LaMarche
Affiliation:
Department of Chemical and Biological Engineering, University of Colorado at Boulder, Boulder, CO 80309, USA
Christine M. Hrenya*
Affiliation:
Department of Chemical and Biological Engineering, University of Colorado at Boulder, Boulder, CO 80309, USA
*
Email address for correspondence: hrenya@colorado.edu

Abstract

The continuum description of rapid cohesive-particle flows comprises the population balance, which tracks various agglomerate sizes in space and time, and kinetic-theory-based balances for momentum and granular energy. Here, fundamental closures are provided in their most general form. In previous population balances, the probability (‘success factor’) that a given collision results in agglomeration or breakage has been set to a constant even though it is well established that the outcome of a collision depends on the impact (relative) velocity. Here, physically based closures that relate the success factors to the granular temperature, a (continuum) measure of the impact velocity, are derived. A key aspect of this derivation is the recognition that the normal component of the impact velocity dictates whether agglomeration occurs. With regard to the kinetic-theory balances, cohesion between particles makes the collisions more dissipative, thereby decreasing the granular temperature. The extra dissipation due to cohesion is accounted for using an effective coefficient of restitution, again determined using the derived distribution of normal impact velocities. This collective treatment of the population and kinetic-theory balances results in a general set of equations that contain several parameters (e.g. critical velocities of agglomeration) that are cohesion-specific (van der Waals, liquid bridging, etc.). The determination of these cohesion-specific quantities using simple discrete element method simulations, as well as validation of the resulting theory, is also presented.

Type
Papers
Copyright
© 2017 Cambridge University Press 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Abbasfard, H., Evans, G. & Moreno-Atanasio, R. 2016 Effect of van der Waals force cut-off distance on adhesive collision parameters in DEM simulation. Powder Technol. 299, 918.Google Scholar
Anand, A., Curtis, J. S., Wassgren, C. R., Hancock, B. C. & Ketterhagen, W. R. 2009 Predicting discharge dynamics of wet cohesive particles from a rectangular hopper using the discrete element method (DEM). Chem. Engng Sci. 64 (24), 52685275.Google Scholar
Antypov, D. & Elliott, J. A. 2011 On an analytical solution for the damped Hertzian spring. Europhys. Lett. 94 (5), 50004.CrossRefGoogle Scholar
Arastoopour, H. & Kim, H. 2002 Extension of kinetic theory to cohesive particle flow. Powder Technol. 122 (1), 8394.Google Scholar
Braumann, A., Kraft, M. & Mort, P. R. 2010 Parameter estimation in a multidimensional granulation model. Powder Technol. 197 (3), 196210.Google Scholar
Brilliantov, N. V. & Pöschel, T. 2010 Kinetic Theory of Granular Gases. Oxford University Press.Google Scholar
Bryan, J. E. & Rober Pfeffer, G. T. 1991 A microlevel-based characterization of granular phenomena. Powder Technol. 65, 257272.Google Scholar
Cahyadi, A., Neumayer, A. H., Hrenya, C. M., Cocco, R. A. & Chew, J. W. 2015 Comparative study of transport disengaging height (TDH) correlations in gas–solid fluidization. Powder Technol. 275, 220238.CrossRefGoogle Scholar
Calvert, G., Ghadiri, M. & Tweedie, R. 2009 Aerodynamic dispersion of cohesive powders: a review of understanding and technology. Adv. Powder Technol. 20 (1), 416.Google Scholar
Cameron, I. T., Wang, F. Y., Immanuel, C. D. & Stepanek, F. 2005 Process systems modelling and applications in granulation: a review. Chem. Engng Sci. 60 (14), 37233750.CrossRefGoogle Scholar
Castellanos, A. 2005 The relationship between attractive interparticle forces and bulk behaviour in dry and uncharged fine powders. Adv. Phys. 54 (4), 263376.Google Scholar
Chaudhuri, B., Mehrotra, A., Muzzio, F. J. & Tomassone, M. S. 2006 Cohesive effects in powder mixing in a tumbling blender. Powder Technol. 165 (2), 105114.CrossRefGoogle Scholar
Chew, J. W., Cahyadi, A., Hrenya, C. M., Karri, R. & Cocco, R. A. 2015 Review of entrainment correlations in gas–solid fluidization. Chem. Engng J. 260, 152171.CrossRefGoogle Scholar
Cocco, R. A., Fullmer, W. D., Liu, P. & Hrenya, C. M. 2017 CFD–DEM: modeling the small to understand the large. Chem. Engng Prog. 113 (9), 3845.Google Scholar
Costa, A., Folch, A. & Macedonio, G. 2010 A model for wet aggregation of ash particles in volcanic plumes and clouds: 1. Theoretical formulation. J. Geophys. Res. 115, B9.Google Scholar
Davis, R. H., Rager, D. A. & Good, B. T. 2002 Elastohydrodynamic rebound of spheres from coated surfaces. J. Fluid Mech. 468, 107119.CrossRefGoogle Scholar
Davis, R. H., Serayssol, J.-M. & Hinch, E. J. 1986 The elastohydrodynamic collision of two spheres. J. Fluid Mech. 163 (‐1), 479497.Google Scholar
Donahue, C. M., Davis, R. H., Kantak, A. A. & Hrenya, C. M. 2012 Mechanisms for agglomeration and deagglomeration following oblique collisions of wet particles. Phys. Rev. E 86 (2).Google Scholar
Donahue, C. M., Hrenya, C. M., Davis, R. H., Nakagawa, K. J., Zelinskaya, A. P. & Joseph, G. G. 2010 Stokes’ cradle: normal three-body collisions between wetted particles. J. Fluid Mech. 650, 479504.CrossRefGoogle Scholar
Fadda, S., Cincotti, A., Concas, A., Pisu, M. & Cao, G. 2009 Modelling breakage and reagglomeration during fine dry grinding in ball milling devices. Powder Technol. 194 (3), 207216.Google Scholar
Fan, R., Marchisio, D. L. & Fox, R. O. 2004 Application of the direct quadrature method of moments to polydisperse gas–solid fluidized beds. Powder Technol. 139 (1), 720.CrossRefGoogle Scholar
Figueroa, I., Li, H. & McCarthy, J. 2009 Predicting the impact of adhesive forces on particle mixing and segregation. Powder Technol. 195 (3), 203212.CrossRefGoogle Scholar
Fox, R. O. 2014 On multiphase turbulence models for collisional fluid–particle flows. J. Fluid Mech. 742, 368424.Google Scholar
Fullmer, W. D. & Hrenya, C. M. 2017 The clustering instability in rapid granular and gas–solid flows. Annu. Rev. Fluid Mech. 49 (1).CrossRefGoogle Scholar
Galvin, J. E. & Benyahia, S. 2014 The effect of cohesive forces on the fluidization of aeratable powders. AIChE J. 60 (2), 473484.Google Scholar
Gantt, J. A. & Gatzke, E. P. 2006 A stochastic technique for multidimensional granulation modeling. AIChE J. 52 (9), 30673077.Google Scholar
Garzó, V. & Dufty, J. W. 1999 Dense fluid transport for inelastic hard spheres. Phys. Rev. E 59 (5), 58955911.Google Scholar
Garzó, V., Dufty, J. W. & Hrenya, C. M. 2007a Enskog theory for polydisperse granular mixtures. I. Navier–Stokes order transport. Phys. Rev. E 76 (3).Google Scholar
Garzó, V., Hrenya, C. M. & Dufty, J. W. 2007b Enskog theory for polydisperse granular mixtures. II. Sonine polynomial approximation. Phys. Rev. E 76 (3).CrossRefGoogle ScholarPubMed
Geldart, D., Harnby, W. & Wong, A. C. 1984 Fluidization of cohesive powders. Powder Technol. 37, 2537.Google Scholar
Gidaspow, D. 1994 Multiphase Flow and Fluidization: Continuum and Kinetic Theory Descriptions. Academic.Google Scholar
Goldhirsch, I. 2003 Rapid granular flows. Annu. Rev. Fluid Mech. 35 (1), 267293.CrossRefGoogle Scholar
Goldschmidt, M. J. V. 2001 Hydrodynamic Modelling of Fluidised Bed Spray Granulation. Twente.Google Scholar
Gollwitzer, F., Rehberg, I., Kruelle, C. A. & Huang, K. 2012 Coefficient of restitution for wet particles. Phys. Rev. E 86 (1).Google Scholar
Grace, J. R. & Taghipour, F. 2004 Verification and validation of CFD models and dynamic similarity for fluidized beds. Powder Technol. 139 (2), 99110.Google Scholar
Hamaker, H. C. 1937 The London–van der Waals attraction between spherical particles. Physica 4 (10), 10581072.CrossRefGoogle Scholar
Henthorne, K. & Hrenya, C. 2012 Particle cohesion. In Particle Theory and Applications. CRC Press.Google Scholar
Hou, Q. F., Zhou, Z. Y. & Yu, A. B. 2012 Micromechanical modeling and analysis of different flow regimes in gas fluidization. Chem. Engng Sci. 84, 449468.Google Scholar
Hrenya, C. M. 2011 Kinetic theory for granular materials: polydispersity. In Computational Gas–Solids Flows and Reacting Systems: Theory, Methods and Practice, pp. 102127. IGI Global.Google Scholar
Jackson, R. 2000 The Dynamics of Fluidized Particles. Cambridge University Press.Google Scholar
Kafui, K. D. & Thornton, C. 2000 Numerical simulations of impact breakage of a spherical crystalline agglomerate. Powder Technol. 109, 113132.Google Scholar
Kantak, A. A., Hrenya, C. M. & Davis, R. H. 2009 Initial rates of aggregation for dilute, granular flows of wet particles. Phys. Fluids 21 (2), 023301.Google Scholar
LaMarche, C. Q., Leadley, S., Liu, P., Kellogg, K. M. & Hrenya, C. M. 2017 Method of quantifying surface roughness for accurate adhesive force predictions. Chem. Engng Sci. 158, 140153.Google Scholar
Le, P. K., Avontuur, P., Hounslow, M. J. & Salman, A. D. 2009 The kinetics of the granulation process: right from the early stages. Powder Technol. 189 (2), 149157.Google Scholar
Lees, A. W. & Edwards, S. F. 1972 The computer study of transport processes under extreme conditions. J. Phys. C: Solid State Phys. 5, 19211929.Google Scholar
Lian, G., Thornton, C. & Adams, M. J. 1998 Discrete particle simulation of agglomerate impact coalescence. Chem. Engng Sci. 53 (19), 33813391.Google Scholar
Liu, L. 2011 Kinetic theory of aggregation in granular flow. AIChE J. 57 (12), 33313343.Google Scholar
Liu, P., Kellogg, K. M., LaMarche, C. Q. & Hrenya, C. M. 2017 Dynamics of singlet–doublet collisions of cohesive particles. Chem. Engng J. 324, 380391.Google Scholar
Liu, P., LaMarche, C. Q., Kellogg, K. M., Leadley, S. & Hrenya, C. M. 2016a Cohesive grains: bridging microlevel measurements to macrolevel flow behavior via surface roughness. AIChE J. 62 (10), 35293537.Google Scholar
Liu, P., LaMarche, C. Q., Kellogg, K. M. & Hrenya, C. M. 2016b Fine-particle defluidization: interaction between cohesion, Young’s modulus and static bed height. Chem. Engng Sci. 145, 266278.Google Scholar
Liu, D., van Wachem, B. G. M., Mudde, R. F., Chen, X. & van Ommen, J. R. 2016c An adhesive CFD–DEM model for simulating nanoparticle agglomerate fluidization. AIChE J. 62 (7), 22592270.Google Scholar
Mansoori, G. A. 1971 Equilibrium thermodynamic properties of the mixture of hard spheres. J. Chem. Phys. 54 (4), 1523.CrossRefGoogle Scholar
Mikami, T., Kamiya, H. & Horio, M. 1998 Numerical simulation of cohesive powder behavior in a fluidized bed. Chem. Engng Sci. 53 (10), 19271940.Google Scholar
Mitrano, P. P., Zenk, J. R., Benyahia, S., Galvin, J. E., Dahl, S. R. & Hrenya, C. M. 2013 Kinetic-theory predictions of clustering instabilities in granular flows: beyond the small-Knudsen-number regime. J. Fluid Mech. 738.Google Scholar
Motlagh, A. H. A., Grace, J. R., Salcudean, M. & Hrenya, C. M. 2014 New structure-based model for Eulerian simulation of hydrodynamics in gas–solid fluidized beds of Geldart group ‘A’ particles. Chem. Engng Sci. 120, 2236.Google Scholar
Murphy, E. & Subramaniam, S. 2015 Freely cooling granular gases with short-ranged attractive potentials. Phys. Fluids 27 (4), 043301.Google Scholar
Murphy, E. & Subramaniam, S. 2017 Binary collision outcomes for inelastic soft-sphere models with cohesion. Powder Technol. 305, 462476.Google Scholar
Pannala, S., Syamlal, M. & O’Brien, T. J. 2011 Computational Gas–Solid Flows and Reacting Systems: Theory, Methods and Practice. IGI Global.Google Scholar
Rabinovich, Y. I., Adler, J. J., Ata, A., Singh, R. K. & Moudgil, B. M. 2000 Adhesion 1199 between nanoscale rough surfaces. J. Colloid Interface Sci. 232 (1), 1016.Google Scholar
Rabinovich, Y. I., Adler, J. J., Ata, A., Singh, R. K. & Moudgil, B. M. 2000 Adhesion between nanoscale rough surfaces. J. Colloid Interface Sci. 232 (1), 1016.Google Scholar
Ramachandran, R., Immanuel, C. D., Stepanek, F., Litster, J. D. & Doyle, F. J. 2009 A mechanistic model for breakage in population balances of granulation: theoretical kernel development and experimental validation. Chem. Engng Res. Des. 87 (4), 598614.Google Scholar
Ramkrishna, D. 2000 Population Balances: Theory and Applications to Particulate Systems in Engineering. Academic.Google Scholar
Ringl, C., Bringa, E. M., Bertoldi, D. S. & Urbassek, H. M. 2012 Collisions of porous clusters: a granular-mechanics study of compaction and fragmentation. Astrophys. J. 752 (2), 151.Google Scholar
Sela, N. & Goldhirsch, I. 1998 Hydrodynamic equations for rapid flows of smooth inelastic spheres, to Burnett order. J. Fluid Mech. 361, 4174.Google Scholar
Sen, M. & Ramachandran, R. 2013 A multi-dimensional population balance model approach to continuous powder mixing processes. Adv. Powder Technol. 24 (1), 5159.Google Scholar
Seville, J., Willett, C. & Knight, P. 2000 Interparticle forces in fluidisation: a review. Powder Technol. 133, 261268.CrossRefGoogle Scholar
Tan, H. S., Goldschmidt, M. J. V., Boerefijn, R., Hounslow, M. J., Salman, A. D. & Kuipers, J. A. M. 2004 Building population balance model for fluidized bed melt granulation: lessons from kinetic theory of granular flow. Powder Technol. 142 (2–3), 103109.Google Scholar
Thornton, C. & Ning, Z. 1998 A theoretical model for the stick/bounce behavior of adhesive, elastic-plastic spheres. Powder Technol. 99, 154162.Google Scholar
Tomas, J. R. 2004 Fundamentals of cohesive powder consolidation and flow. Granul. Matt. 6 (2–3), 7586.Google Scholar
Vashisth, S., Ahmadi Motlagh, A. H., Tebianian, S., Salcudean, M. & Grace, J. R. 2015 Comparison of numerical approaches to model FCC particles in gas–solid bubbling fluidized bed. Chem. Engng Sci. 134, 269286.Google Scholar
Visser, J. 1989 Van der Waals and other cohesive forces affecting powder fluidization. Powder Technol. 58 (1), 110.Google Scholar
van Wachem, B. & Sasic, S. 2008 Derivation, simulation and validation of a cohesive particle flow CFD model. AIChE J. 54 (1), 919.Google Scholar
Wang, J., van der Hoef, M. A. & Kuipers, J. A. M. 2011 The role of scale resolution versus inter-particle cohesive forces in two-fluid modeling of bubbling fluidization of Geldart A particles. Chem. Engng Sci. 66 (18), 42294240.Google Scholar
Weber, M. W., Hoffman, D. K. & Hrenya, C. M. 2004 Discrete-particle simulations of cohesive granular flow using a square-well potential. Granul. Matt. 6, 239354.CrossRefGoogle Scholar