Hostname: page-component-745bb68f8f-f46jp Total loading time: 0 Render date: 2025-01-13T02:01:17.823Z Has data issue: false hasContentIssue false

Contrasts between momentum and scalar transport over very rough surfaces

Published online by Cambridge University Press:  07 October 2019

Qi Li*
Affiliation:
Department of Civil and Environmental Engineering, Princeton University, Princeton, NJ 08544, USA School of Civil and Environmental Engineering, Cornell University, Ithaca, NY 14853, USA
Elie Bou-Zeid
Affiliation:
School of Civil and Environmental Engineering, Cornell University, Ithaca, NY 14853, USA
*
Email address for correspondence: ql56@cornell.edu

Abstract

Large-eddy simulations are conducted to contrast momentum and passive scalar transport over large, three-dimensional roughness elements in a turbulent channel flow. Special attention is given to the dispersive fluxes, which are shown to be a significant fraction of the total flux within the roughness sublayer. Based on pointwise quadrant analysis, the turbulent components of the transport of momentum and scalars are found to be similar in general, albeit with increasing dissimilarity for roughnesses with low frontal blockage. However, strong dissimilarity is noted between the dispersive momentum and scalar fluxes, especially below the top of the roughness elements. In general, turbulence is found to transport momentum more efficiently than scalars, while the reverse applies to the dispersive contributions. The effects of varying surface geometries, measured by the frontal density, are pronounced on turbulent fluxes and even more so on dispersive fluxes. Increasing frontal density induces a general transition in the flow from a wall bounded type to a mixing layer type. This transition results in an increase in the efficiency of turbulent momentum transport, but the reverse occurs for scalars due to reduced contributions from large-scale motions in the roughness sublayer. This study highlights the need for distinct parameterizations of the turbulent and dispersive fluxes, as well as the importance of considering the contrasts between momentum and scalar transport for flows over very rough surfaces.

Type
JFM Papers
Copyright
© 2019 Cambridge University Press 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Adrian, R. J. 2007 Hairpin vortex organization in wall turbulence. Phys. Fluids 19 (4), 041301.Google Scholar
Anderson, W. 2016 Amplitude modulation of streamwise velocity fluctuations in the roughness sublayer: evidence from large-eddy simulations. J. Fluid Mech. 789, 567588.Google Scholar
Anderson, W., Li, Q. & Bou-Zeid, E. 2015 Numerical simulation of flow over urban-like topographies and evaluation of turbulence temporal attributes. J. Turbul. 16 (9), 809831.Google Scholar
Belcher, S. E., Harman, I. N. & Finnigan, J. J. 2012 The wind in the willows: flows in forest canopies in complex terrain. Annu. Rev. Fluid Mech. 44, 479504.Google Scholar
Boppana, V. B. L., Xie, Z. T. & Castro, I. P. 2010 Large-eddy simulation of dispersion from surface sources in arrays of obstacles. Boundary-Layer Meteorol. 135 (3), 433454.Google Scholar
Boppana, V. B. L., Xie, Z.-T. & Castro, I. P. 2012 Large-eddy simulation of heat transfer from a single cube mounted on a very rough wall. Boundary-Layer Meteorol. 147 (3), 347368.Google Scholar
Bose, S. T. & Park, G. I. 2018 Wall-modeled large-eddy simulation for complex turbulent flows. Annu. Rev. Fluid Mech. 50, 535561.Google Scholar
Bou-Zeid, E., Higgins, C., Huwald, H., Meneveau, C. & Parlange, M. B. 2010 Field study of the dynamics and modelling of subgrid-scale turbulence in a stable atmospheric surface layer over a glacier. J. Fluid Mech. 665, 480515.Google Scholar
Bou-Zeid, E., Meneveau, C. & Parlange, M. 2005 A scale-dependent Lagrangian dynamic model for large eddy simulation of complex turbulent flows. Phys. Fluids 17 (2), 118.Google Scholar
Bou-Zeid, E., Vercauteren, N., Parlange, M. B. & Meneveau, C. 2008 Scale dependence of subgrid-scale model coefficients: an a priori study. Phys. Fluids 20 (11), 16.Google Scholar
Castro, I. P., Cheng, H. & Reynolds, R. 2006 Turbulence over urban-type roughness: deductions from wind-tunnel measurements. Boundary-Layer Meteorol. 118 (1), 109131.Google Scholar
Chamecki, M. 2013 Persistence of velocity fluctuations in non-Gaussian turbulence within and above plant canopies. Phys. Fluids 25 (11).Google Scholar
Cheng, Y., Sayde, C., Li, Q., Basara, J., Selker, J., Tanner, E. & Gentine, P. 2017 Failure of Taylor’s hypothesis in the atmospheric surface layer and its correction for eddy-covariance measurements. Geophys. Res. Lett. 44 (9), 42874295.Google Scholar
Chester, S., Meneveau, C. & Parlange, M. B. 2007 Modeling turbulent flow over fractal trees with renormalized numerical simulation. J. Comput. Phys. 225 (1), 427448.Google Scholar
Christen, A., van Gorsel, E. & Vogt, R. 2007 Coherent structures in urban roughness sublayer turbulence. Intl J. Climatol. 27 (14), 19551968.Google Scholar
Christen, A. & Vogt, R. 2004 Direct measurement of dispersive fluxes within a cork oak plantation. In 26th Conference on Agricultural and Forest Meteorology, American Meteorological Society.Google Scholar
Coceal, O., Dobre, A., Thomas, T. G. & Belcher, S. E. 2007a Structure of turbulent flow over regular arrays of cubical roughness. J. Fluid Mech. 589, 375409.Google Scholar
Coceal, O., Thomas, T. G. & Belcher, S. E. 2007b Spatial variability of flow statistics within regular building arrays. Boundary-Layer Meteorol. 125 (3), 537552.Google Scholar
Dupont, S. & Patton, E. G. 2012 Momentum and scalar transport within a vegetation canopy following atmospheric stability and seasonal canopy changes: the CHATS experiment. Atmos. Chem. Phys. 12 (13), 59135935.Google Scholar
Fang, J., Diebold, M., Higgins, C. & Parlange, M. B. 2011 Towards oscillation-free implementation of the immersed boundary method with spectral-like methods. J. Comput. Phys. 230 (22), 81798191.Google Scholar
Finnigan, J. J. 1985 Turbulent Transport in Flexible Plant Canopies. pp. 443480. Springer.Google Scholar
Finnigan, J. J. 2003 Turbulence in plant canopies. Annu. Rev. Fluid Mech. 32 (1), 519571.Google Scholar
Finnigan, J. J., Shaw, R. H. & Patton, E. G. 2009 Turbulence structure above a vegetation canopy. J. Fluid Mech. 637, 387.Google Scholar
Ghisalberti, M. 2009 Obstructed shear flows: similarities across systems and scales. J. Fluid Mech. 641, 5161.Google Scholar
Giometto, M. G., Christen, A., Meneveau, C., Fang, J., Krafczyk, M. & Parlange, M. B. 2016 Spatial characteristics of roughness sublayer mean flow and turbulence over a realistic urban surface. Boundary-Layer Meteorol. 160 (3), 425452.Google Scholar
Hetsroni, G., Mosyak, A., Rozenblit, R. & Yarin, L. P. 1999 Thermal patterns on the smooth and rough walls in turbulent flows. Intl J. Heat Mass Transfer 42 (20), 38153829.Google Scholar
Jelly, T. O. & Busse, A. 2018 Reynolds and dispersive shear stress contributions above highly skewed roughness. J. Fluid Mech. 852, 710724.Google Scholar
Jiménez, J. 2004 Turbulent flows over rough walls. Annu. Rev. Fluid Mech. 36 (1), 173.Google Scholar
Kader, B. A. & Yaglom, A. M. 1972 Heat and mass transfer laws for fully turbulent wall flows. Intl J. Heat Mass Transfer 15 (12), 23292351.Google Scholar
Kanda, M. 2006 Large-eddy simulations on the effects of surface geometry of building arrays on turbulent organized structures. Boundary-Layer Meteorol. 118 (1), 151168.Google Scholar
Kanda, M., Moriwaki, R. & Kasamatsu, F. 2004 Large-eddy simulation of turbulent organized structures within and above explicitly resolved cube arrays. Boundary-Layer Meteorol. 112 (2), 343368.Google Scholar
Kang, H. S. & Meneveau, C. 2001 Passive scalar anisotropy in a heated turbulent wake: new observations and implications for large-eddy simulations. J. Fluid Mech. 442, 161170.Google Scholar
Katul, G. G., Hsieh, C. I. & Kuhn, G. 1997a Turbulent eddy motion at the forestatmosphere interface. J. Geophys.Google Scholar
Katul, G. G., Kuhn, G., Schieldge, J. & Hsieh, C. I. 1997b The ejection-sweep character of scalar fluxes in the unstable surface layer. Boundary-Layer Meteorol.Google Scholar
Leonardi, S. & Castro, I. P. 2010 Channel flow over large cube roughness: a direct numerical simulation study. J. Fluid Mech. 651, 519539.Google Scholar
Leonardi, S., Orlandi, P., Djenidi, L. & Antonia, R. A. 2015 Heat transfer in a turbulent channel flow with square bars or circular rods on one wall. J. Fluid Mech. 776, 512530.Google Scholar
Li, D. 2016 Revisiting the subgrid-scale Prandtl number for large-eddy simulation. J. Fluid Mech. 802, R2.Google Scholar
Li, D. & Bou-Zeid, E. 2011 Coherent structures and the dissimilarity of turbulent transport of momentum and scalars in the unstable atmospheric surface layer. Boundary-Layer Meteorol. 140 (2), 243262.Google Scholar
Li, Q., Bou-Zeid, E. & Anderson, W. 2016a The impact and treatment of the Gibbs phenomenon in immersed boundary method simulations of momentum and scalar transport. J. Comput. Phys. 310, 237251.Google Scholar
Li, Q., Bou-Zeid, E., Anderson, W., Grimmond, S. B. & Hultmark, M. 2016b Quality and reliability of les of convective scalar transfer at high Reynolds numbers. Intl J. Heat Mass Transfer 102, 959970.Google Scholar
Llaguno-Munitxa, M. & Bou-Zeid, E. 2018 Shaping buildings to promote street ventilation: a large-eddy simulation study. Urban Clim. 26, 7694.Google Scholar
Llaguno-Munitxa, M., Bou-Zeid, E. & Hultmark, M. 2017 The influence of building geometry on street canyon air flow: validation of large eddy simulations against wind tunnel experiments. J. Wind Engng Ind. Aerodyn. 165, 115130.Google Scholar
Macdonald, R. W. & Griffiths, R. F. 1998 An improved method for the estimation of surface roughness of obstacle arrays. Atmos. Environ 32 (11), 18382042.Google Scholar
Martilli, A. & Santiago, J. L. 2007 CFD simulation of airflow over a regular array of cubes. Part II: analysis of spatial average properties. Boundary-Layer Meteorol. 122 (3), 635.Google Scholar
Mittal, R., Dong, H., Bozkurttas, M., Najjar, F. M., Vargas, A. & Von Loebbecke, A. 2008 A versatile sharp interface immersed boundary method for incompressible flows with complex boundaries. J. Comput. Phys. 227 (10), 48254852.Google Scholar
Mittal, R. & Iaccarino, G. 2005 Immersed boundary methods. Annu. Rev. Fluid Mech. Google Scholar
Mohd-Yusof, J.1997 Combined immersed-boundary/B-spline methods for simulations of flow in complex geometries. In Center for Turbulence Research Annual Research Briefs, pp. 317–327, NASA Ames/Stanford University.Google Scholar
Mouri, H., Takaoka, M., Hori, A. & Kawashima, Y. 2003 Probability density function of turbulent velocity fluctuations in a rough-wall boundary layer. Phys. Rev. E 68 (3), 6.Google Scholar
Nagano, Y. & Tagawa, M. 1988 Statistical characteristics of wall turbulence with a passive scalar. J. Fluid Mech. 196, 157185.Google Scholar
Orlandi, P. & Leonardi, S. 2008 Direct numerical simulation of three-dimensional turbulent rough channels: parameterization and flow physics. J. Fluid Mech. 606, 399415.Google Scholar
Park, S. B. & Baik, J. J. 2013 A large-eddy simulation study of thermal effects on turbulence coherent structures in and above a building array. J. Appl. Meteorol. Climatol. 52 (6), 13481365.Google Scholar
Perret, L., Basley, J., Mathis, R. & Piquet, T. 2019 The atmospheric boundary layer over urban-like terrain: influence of the plan density on roughness sublayer dynamics. Boundary-Layer Meteorol. 170 (2), 205234.Google Scholar
Perry, A. E. & Hoffmann, P. H. 1976 An experimental study of turbulent convective heat transfer from a flat plate. J. Fluid Mech. 77 (2), 355368.Google Scholar
Philips, D. A., Rossi, R. & Iaccarino, G. 2013 Large-eddy simulation of passive scalar dispersion in an urban-like canopy. J. Fluid Mech. 723, 404428.Google Scholar
Pirozzoli, S., Bernardini, M. & Orlandi, P. 2016 Passive scalars in turbulent channel flow at high Reynolds number. J. Fluid Mech. 788, 614639.Google Scholar
Placidi, M. & Ganapathisubramani, B. 2015 Effects of frontal and plan solidities on aerodynamic parameters and the roughness sublayer in turbulent boundary layers. J. Fluid Mech. 782, 541566.Google Scholar
Poggi, D. & Katul, G. G. 2008 The effect of canopy roughness density on the constitutive components of the dispersive stresses. Exp. Fluids 45 (1), 111121.Google Scholar
Poggi, D., Katul, G. G. & Albertson, J. D. 2004 A note on the contribution of dispersive fluxes to momentum transfer within canopies. Boundary-Layer Meteorol. 111 (3), 615621.Google Scholar
Pokrajac, D., Campbell, L. J., Nikora, V., Manes, C. & McEwan, I. 2007 Quadrant analysis of persistent spatial velocity perturbations over square-bar roughness. Exp. Fluids 42 (3), 413423.Google Scholar
Raupach, M. R. 1981 Conditional statistics of Reynolds stress in rough-wall and smooth-wall turbulent boundary layers. J. Fluid Mech. 108, 363382.Google Scholar
Raupach, M. R., Finnigan, J. J. & Brunei, Y. 1996 Coherent eddies and turbulence in vegetation canopies: the mixing-layer analogy. Boundary-Layer Meteorol. 78 (3–4), 351382.Google Scholar
Rotach, M. W. 1993 Turbulence close to a rough urban surface part I: Reynolds stress. Boundary-Layer Meteorol. 65 (1–2), 128.Google Scholar
Tseng, Y. H., Meneveau, C. & Parlange, M. B. 2006 Modeling flow around bluff bodies and predicting urban dispersion using large eddy simulation. Environ. Sci. Technol. 40 (8), 26532662.Google Scholar
Wallace, J. M. 2016 Quadrant analysis in turbulence research: history and evolution. Annu. Rev. Fluid Mech. 48 (1), 131.Google Scholar
Wang, L., Li, D., Gao, Z., Sun, T., Guo, X. & Bou-Zeid, E. 2014 Turbulent transport of momentum and scalars above an urban canopy. Boundary-Layer Meteorol. 150 (3), 485511.Google Scholar
Wang, W., Smith, J. A., Ramamurthy, P., Baeck, M. L., Bou-Zeid, E. & Scanlon, T. M. 2016 On the correlation of water vapor and c02: application to flux partitioning of evapotranspiration. Water Resour. Res. 52 (12), 94529469.Google Scholar
Wilson, N. R. & Shaw, R. H. 1977 A higher order closure model for canopy flow. J. Appl. Meteorol. 16 (11), 11971205.Google Scholar
Wyngaard, J. C. & Moeng, C.-H. 1992 Parameterizing turbulent diffusion through the joint probability density. Boundary-Layer Meteorol. 60 (1-2), 113.Google Scholar
Yang, X., Sadique, J., Mittal, R. & Meneveau, C. 2015 Integral wall model for large eddy simulations of wall-bounded turbulent flows. Phys. Fluids 27 (2), 025112.Google Scholar
Yang, X., Sadique, J., Mittal, R. & Meneveau, C. 2016 Exponential roughness layer and analytical model for turbulent bounday layer flow over rectangular-prism roughness elements. J. Fluid Mech. 789, 127165.Google Scholar
Yuan, J. & Jouybari, M. A. 2018 Topographical effects of roughness on turbulence statistics in roughness sublayer. Phys. Rev. Fluids 3 (11), 114603.Google Scholar
Zhu, X., Iungo, G. V., Leonardi, S. & Anderson, W. 2017 Parametric study of urban-like topographic statistical moments relevant to a priori modelling of bulk aerodynamic parameters. Boundary-Layer Meteorol. 162 (2), 231253 Google Scholar