Hostname: page-component-78c5997874-g7gxr Total loading time: 0 Render date: 2024-11-14T11:32:41.336Z Has data issue: false hasContentIssue false

Controlled reattachment in separated flows: a variational approach to recirculation length reduction

Published online by Cambridge University Press:  24 February 2014

E. Boujo*
Affiliation:
LFMI, École Polytechnique Fédérale de Lausanne, CH-1015 Lausanne, Switzerland
F. Gallaire
Affiliation:
LFMI, École Polytechnique Fédérale de Lausanne, CH-1015 Lausanne, Switzerland
*
Email address for correspondence: edouard.boujo@epfl.ch

Abstract

A variational technique is used to derive analytical expressions for the sensitivity of recirculation length to steady forcing in separated flows. Linear sensitivity analysis is applied to the two-dimensional steady flow past a circular cylinder for Reynolds numbers $40 \leq Re \leq 120$, in both the subcritical and supercritical regimes. Regions that are the most sensitive to volume forcing and wall blowing/suction are identified. Control configurations that reduce the recirculation length are designed based on the sensitivity information, in particular small cylinders used as control devices in the wake of the main cylinder, and fluid suction at the cylinder wall. Validation against full nonlinear Navier–Stokes calculations shows excellent agreement for small-amplitude control. The linear stability properties of the controlled flow are systematically investigated. At moderate Reynolds numbers, we observe that regions where control reduces the recirculation length correspond to regions where it has a stabilizing effect on the most unstable global mode associated with vortex shedding, while this property no longer holds at larger Reynolds numbers.

Type
Papers
Copyright
© 2014 Cambridge University Press 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Acrivos, A., Leal, L. G., Snowden, D. D. & Pan, F. 1968 Further experiments on steady separated flows past bluff objects. J. Fluid Mech. 34, 2548.CrossRefGoogle Scholar
Barkley, D., Gomes, M. G. M. & Henderson, R. D. 2002 Three-dimensional instability in flow over a backward-facing step. J. Fluid Mech. 473, 167190.CrossRefGoogle Scholar
Bewley, T. R., Moin, P. & Temam, R. 2001 DNS-based predictive control of turbulence: an optimal benchmark for feedback algorithms. J. Fluid Mech. 447, 179225.CrossRefGoogle Scholar
Bottaro, A., Corbett, P. & Luchini, P. 2003 The effect of base flow variation on flow stability. J. Fluid Mech. 476, 293302.CrossRefGoogle Scholar
Brandt, L., Sipp, D., Pralits, J. O. & Marquet, O. 2011 Effect of base-flow variation in noise amplifiers: the flat-plate boundary layer. J. Fluid Mech. 687, 503528.CrossRefGoogle Scholar
Chomaz, J.-M. 2005 Global instabilities in spatially developing flows: non-normality and nonlinearity. Annu. Rev. Fluid Mech. 37, 357392.CrossRefGoogle Scholar
Corbett, P. & Bottaro, A. 2001 Optimal control of nonmodal disturbances in boundary layers. Theor. Comput. Fluid Dyn. 15 (2), 6581.CrossRefGoogle Scholar
Finn, R. K. 1953 Determination of the drag on a cylinder at low Reynolds numbers. J. Appl. Phys. 24 (6), 771773.CrossRefGoogle Scholar
Giannetti, F. & Luchini, P. 2007 Structural sensitivity of the first instability of the cylinder wake. J. Fluid Mech. 581, 167197.CrossRefGoogle Scholar
Glezer, A. & Amitay, M. 2002 Synthetic jets. Annu. Rev. Fluid Mech. 34 (1), 503529.CrossRefGoogle Scholar
Greenblatt, D. & Wygnanski, I. J. 2000 The control of flow separation by periodic excitation. Prog. Aerosp. Sci. 36 (7), 487545.CrossRefGoogle Scholar
Henderson, R. D. 1995 Details of the drag curve near the onset of vortex shedding. Phys. Fluids 7 (9), 21022104.CrossRefGoogle Scholar
Hill, D. C. 1992 A theoretical approach for analyzing the restabilization of wakes. AIAA Paper 92-0067.Google Scholar
Marquet, O. & Sipp, D. 2010 Active steady control of vortex shedding: an adjoint-based sensitivity approach. In Seventh IUTAM Symposium on Laminar–Turbulent Transition (ed. Schlatter, P. & Henningson, D. S.), IUTAM Bookseries, vol. 18, pp. 259264. Springer.CrossRefGoogle Scholar
Marquet, O., Sipp, D. & Jacquin, L. 2008 Sensitivity analysis and passive control of cylinder flow. J. Fluid Mech. 615, 221252.CrossRefGoogle Scholar
Marquillie, M. & Ehrenstein, U. 2003 On the onset of nonlinear oscillations in a separating boundary-layer flow. J. Fluid Mech. 490, 169188.CrossRefGoogle Scholar
Meliga, P., Sipp, D. & Chomaz, J.-M. 2010 Open-loop control of compressible afterbody flows using adjoint methods. Phys. Fluids 22 (5), 054109.CrossRefGoogle Scholar
Monkewitz, P. A. 1988 A note on vortex shedding from axisymmetric bluff bodies. J. Fluid Mech. 192, 561575.CrossRefGoogle Scholar
Nishioka, M. & Sato, H. 1978 Mechanism of determination of the shedding frequency of vortices behind a cylinder at low Reynolds numbers. J. Fluid Mech. 89, 4960.CrossRefGoogle Scholar
Passaggia, P.-Y., Leweke, T. & Ehrenstein, U. 2012 Transverse instability and low-frequency flapping in incompressible separated boundary layer flows: an experimental study. J. Fluid Mech. 703, 363373.CrossRefGoogle Scholar
Sipp, D. 2012 Open-loop control of cavity oscillations with harmonic forcings. J. Fluid Mech. 708, 439468.CrossRefGoogle Scholar
Sipp, D. & Lebedev, A. 2007 Global stability of base and mean flows: a general approach and its applications to cylinder and open cavity flows. J. Fluid Mech. 593, 333358.CrossRefGoogle Scholar
Strykowski, P. J. & Sreenivasan, K. R. 1990 On the formation and suppression of vortex ‘shedding’ at low Reynolds numbers. J. Fluid Mech. 218, 71107.CrossRefGoogle Scholar
Taneda, S. 1956 Experimental investigation of the wakes behind cylinders and plates at low Reynolds numbers. J. Phys. Soc. Japan 11 (3), 302307.CrossRefGoogle Scholar
Thiria, B. & Wesfreid, J. E. 2007 Stability properties of forced wakes. J. Fluid Mech. 579, 137161.CrossRefGoogle Scholar
Tritton, D. J. 1959 Experiments on the flow past a circular cylinder at low Reynolds numbers. J. Fluid Mech. 6, 547567.CrossRefGoogle Scholar
Verma, A. & Mittal, S. 2011 A new unstable mode in the wake of a circular cylinder. Phys. Fluids 23 (12), 121701.CrossRefGoogle Scholar
Zielinska, B. J. A., Goujon-Durand, S., Dušek, J. & Wesfreid, J. E. 1997 Strongly nonlinear effect in unstable wakes. Phys. Rev. Lett. 79, 38933896.CrossRefGoogle Scholar