Hostname: page-component-6bb9c88b65-x9fsb Total loading time: 0 Render date: 2025-07-25T07:54:18.320Z Has data issue: false hasContentIssue false

Controlling heat transport and flow structure in vertical convection using the thermoelectric effect

Published online by Cambridge University Press:  17 July 2025

Liang Xue
Affiliation:
School of Engineering Science, University of Chinese Academy of Sciences, Beijing 101408, PR China
Long Chen*
Affiliation:
School of Engineering Science, University of Chinese Academy of Sciences, Beijing 101408, PR China
Ming-Jiu Ni
Affiliation:
School of Engineering Science, University of Chinese Academy of Sciences, Beijing 101408, PR China State Key Laboratory for Strength and Vibration of Mechanical Structures, School of Aerospace, Xi’an Jiaotong University, Xi’an, Shannxi 710049, PR China
*
Corresponding author: Long Chen, chenlong@ucas.ac.cn

Abstract

Direct numerical simulations have been conducted to explore the coupling effect of the thermoelectric effect and vertical convection (VC) in a square cavity composed of liquid lithium and stainless steel under different Hartmann numbers at $Ra=10^5$. By leveraging thermoelectric phenomena, an innovative approach is proposed to actively modulate heat transfer efficiency. The core concept lies in modulating the intensity of large-scale circulation (LSC) in VC systems through the torque generated by the interaction between thermoelectric currents and magnetic fields via Lorentz forces. The findings reveal that when the torque aligns with the direction of LSC induced by pure buoyancy, both momentum and heat transfer are enhanced. However, due to the magnetic damping itself, this enhancement is not sustained indefinitely, resulting in a trend of initial increase followed by decline in both momentum and heat transfer efficiency. Conversely, when the magnetic field direction is reversed, causing the Lorentz force torque to oppose the buoyancy-driven circulation, both momentum and heat transfer efficiency diminish until the flow reverses. By varying the magnetic field intensity, three distinct flow regimes are identified: the buoyancy-dominated regime, the thermoelectric-dominated regime and the magnetic-damping-dominated regime. The transition between the buoyancy-dominated regime and thermoelectric-dominated regime – specifically, the onset of flow reversal – is analysed through a boundary-layer–bulk–boundary-layer coupling model. This model enables precise prediction of the critical $Ha$ based on the torque balance between buoyancy forces and thermoelectrically induced Lorentz forces, and demonstrates close agreement with numerical simulations.

Information

Type
JFM Papers
Copyright
© The Author(s), 2025. Published by Cambridge University Press

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Article purchase

Temporarily unavailable

References

Akhmedagaev, R., Zikanov, O., Krasnov, D. & Schumacher, J. 2020 Turbulent Rayleigh–Bénard convection in a strong vertical magnetic field. J. Fluid Mech. 895, R4.10.1017/jfm.2020.336CrossRefGoogle Scholar
Chen, X.-Y., Xie, Y.-C., Yang, J.-C. & Ni, M.-J. 2023 a Strong coupling of flow structure and heat transport in liquid metal thermal convection. J. Fluid Mech. 975, A21.10.1017/jfm.2023.827CrossRefGoogle Scholar
Chen, Z., Wang, Z. & Chen, L. 2022 Magnetic field control of three‐dimensional self‐driven multi‐physical thermoelectric system in metal energy storage. Intl J. Energ. Res. 46 (8), 1125011264.10.1002/er.7925CrossRefGoogle Scholar
Chen, Z.-Q., Wang, Z.-H. & Chen, L. 2023 b Heat transfer enhancement of liquid metal thermal convection affected by the Seebeck effect and magnetic field. Intl J. Energ. Res. 1, 5159687.Google Scholar
Chong, K.L., Huang, S.-D., Kaczorowski, M. & Xia, K.-Q. 2015 Condensation of coherent structures in turbulent flows. Phys. Rev. Lett. 115 (26), 264503.10.1103/PhysRevLett.115.264503CrossRefGoogle ScholarPubMed
Chong, K.L., Qiao, S., Wu, J.-Z. & Wang, B.-F. 2024 Heat transfer enhancement in vertical convection under spatially harmonic temperature modulation. Intl J. Heat Mass Transfer 227, 125452.10.1016/j.ijheatmasstransfer.2024.125452CrossRefGoogle Scholar
Cramer, A., Zhang, X. & Gerbeth, G. 2009 Macroscopic thermomagnetic convection: a more generic case and optimization. Magnetohydrodynamics 45 (4), 505510.10.22364/mhd.45.4.3CrossRefGoogle Scholar
Davidson, P.A. 2002 An Introduction to Magnetohydrodynamics. Cambridge University Press.Google Scholar
Gorbunov, L.A. 1988 Effect of thermoelectromagnetic convection on the production of bulk single-crystals consisting of semiconductor melts in a constant magnetic field. Magnetohydrodynamics 23 (4), 277284.Google Scholar
Grossmann, S. & Lohse, D. 2000 Scaling in thermal convection: a unifying theory. J. Fluid Mech. 407, 2756.10.1017/S0022112099007545CrossRefGoogle Scholar
Horacek, J., et al. 2018 Plans for liquid metal divertor in tokamak compass. Plasma Phys. Rep. 44 (7), 652656.10.1134/S1063780X18070024CrossRefGoogle Scholar
Hu, J., Zhang, S. & Xia, Z. 2024 Flow reversal and multiple states in turbulent Rayleigh–Bénard convection with partially isothermal plates. J. Fluid Mech. 987, A9.10.1017/jfm.2024.388CrossRefGoogle Scholar
Huang, S.-D., Kaczorowski, M., Ni, R. & Xia, K.-Q. 2013 Confinement-induced heat-transport enhancement in turbulent thermal convection. Phys. Rev. Lett. 111 (10), 104501.10.1103/PhysRevLett.111.104501CrossRefGoogle ScholarPubMed
Inglis, D.R. 1955 Theories of the earth’s magnetism. Rev. Mod. Phys. 27 (2), 212248.10.1103/RevModPhys.27.212CrossRefGoogle Scholar
Jaworski, M.A., Gray, T.K., Antonelli, M., Kim, J.J., Lau, C.Y., Lee, M.B., Neumann, M.J., Xu, W. & Ruzic, D.N. 2010 Thermoelectric magnetohydrodynamic stirring of liquid metals. Phys. Rev. Lett. 104 (9), 094503.10.1103/PhysRevLett.104.094503CrossRefGoogle ScholarPubMed
Jiang, H., Zhu, X., Mathai, V., Verzicco, R., Lohse, D. & Sun, C. 2018 Controlling heat transport and flow structures in thermal turbulence using ratchet surfaces. Phys. Rev. Lett. 120 (4), 044501.10.1103/PhysRevLett.120.044501CrossRefGoogle ScholarPubMed
Jiang, H., Zhu, X., Mathai, V., Yang, X., Verzicco, R., Lohse, D. & Sun, C. 2019 Convective heat transfer along ratchet surfaces in vertical natural convection. J. Fluid Mech. 873, 10551071.10.1017/jfm.2019.446CrossRefGoogle Scholar
Jing, Z., Ni, M.-J. & Wang, Z.-H. 2013 Numerical study of MHD natural convection of liquid metal with wall effects. Numer. Heat Transfer A: Appl. 64 (8), 676693.10.1080/10407782.2013.790626CrossRefGoogle Scholar
Kaita, R., et al. 2007 Low recycling and high power density handling physics in the Current Drive Experiment-Upgrade with lithium plasma-facing components. Phys. Plasmas 14 (5), 056111.10.1063/1.2718509CrossRefGoogle Scholar
Kurenkova, N., Zienicke, E. & Thess, A. 2001 Influence of the thermoelectric effect on the Rayleigh–Bénard instability inside a magnetic field. Phys. Rev. E 64 (3), 036307.10.1103/PhysRevE.64.036307CrossRefGoogle ScholarPubMed
Li, T., Lv, Y.-G., Liu, J. & Zhou, Y.-X. 2006 A powerful way of cooling computer chip using liquid metal with low melting point as the cooling fluid. Forschung im Ingenieurwesen 70 (4), 243251.10.1007/s10010-006-0037-1CrossRefGoogle Scholar
Liu, H.-R., Chong, K.L., Ng, C.S., Verzicco, R. & Lohse, D. 2022 Enhancing heat transport in multiphase Rayleigh–Bénard turbulence by changing the plate–liquid contact angles. J. Fluid Mech. 933, R1.10.1017/jfm.2021.1068CrossRefGoogle Scholar
Liu, J., Zhou, Y.-X., Lv, Y.-G. & Li, T. 2005 Liquid metal based miniaturized chip-cooling device driven by electromagnetic pump. In Proceedings of the ASME 2005 International Mechanical Engineering Congress and Exposition, pp. 501510. ASME.Google Scholar
Ma, K. & Liu, J. 2007 a Liquid metal cooling in thermal management of computer chips. Frontiers Energy Power Engng China 1 (4), 384402.10.1007/s11708-007-0057-3CrossRefGoogle Scholar
Ma, K.-Q. & Liu, J. 2007 b Heat-driven liquid metal cooling device for the thermal management of a computer chip. J. Phys. D: Appl. Phys. 40 (15), 47224729.10.1088/0022-3727/40/15/055CrossRefGoogle Scholar
Mohseni, K. 2005 Effective cooling of integrated circuits using liquid alloy electrowetting. In Semiconductor Thermal Measurement and Management IEEE Twenty First Annual IEEE Symposium, 2005, pp. 2025. IEEE.10.1109/STHERM.2005.1412154CrossRefGoogle Scholar
Moreau, R., Laskar, O., Tanaka, M. & Camel, D. 1993 Thermoelectric magnetohydrodynamic effects on solidification of metallic alloys in the dendritic regime. Mater. Sci. Engng A 173 (1), 93100.CrossRefGoogle Scholar
Ng, C.S., Ooi, A., Lohse, D. & Chung, D. 2015 Vertical natural convection: application of the unifying theory of thermal convection. J. Fluid Mech. 764, 349361.10.1017/jfm.2014.712CrossRefGoogle Scholar
Ni, M.-J., Munipalli, R., Huang, P., Morley, N.B. & Abdou, M.A. 2007 a A current density conservative scheme for incompressible MHD flows at a low magnetic Reynolds number. Part II: On an arbitrary collocated mesh. J. Comput. Phys. 227 (1), 205228.10.1016/j.jcp.2007.07.023CrossRefGoogle Scholar
Ni, M.-J., Munipalli, R., Morley, N.B., Huang, P. & Abdou, M.A. 2007 b A current density conservative scheme for incompressible MHD flows at a low magnetic Reynolds number. Part I: On a rectangular collocated grid system. J. Comput. Phys. 227 (1), 174204.10.1016/j.jcp.2007.07.025CrossRefGoogle Scholar
Pourkiaei, S.M., Ahmadi, M.H., Sadeghzadeh, M., Moosavi, S., Pourfayaz, F., Chen, L., Pour Yazdi, M.A. & Kumar, R. 2019 Thermoelectric cooler and thermoelectric generator devices: a review of present and potential applications, modeling and materials. Energy 186, 115849.10.1016/j.energy.2019.07.179CrossRefGoogle Scholar
Shen, Y., Tong, P. & Xia, K.-Q. 1996 Turbulent convection over rough surfaces. Phys. Rev. Lett. 76 (6), 908911.10.1103/PhysRevLett.76.908CrossRefGoogle ScholarPubMed
Shercliff, J.A. 1979 a Thermoelectric magnetohydrodynamics in closed containers. Phys. Fluids 22 (4), 635640.10.1063/1.862646CrossRefGoogle Scholar
Shercliff, J.A. 1979 b Thermoelectric magnetohydrodynamics. J. Fluid Mech. 91 (2), 231251.10.1017/S0022112079000136CrossRefGoogle Scholar
Shishkina, O. 2016 Momentum and heat transport scalings in laminar vertical convection. Phys. Rev. E 93 (5), 051102.10.1103/PhysRevE.93.051102CrossRefGoogle ScholarPubMed
Stevens, R.J.A.M., Verzicco, R. & Lohse, D. 2010 Radial boundary layer structure and Nusselt number in Rayleigh–Bénard convection. J. Fluid Mech. 643, 495507.10.1017/S0022112009992461CrossRefGoogle Scholar
Tasaka, Y., Yanagisawa, T., Fujita, K., Miyagoshi, T. & Sakuraba, A. 2021 Two-dimensional oscillation of convection roll in a finite liquid metal layer under a horizontal magnetic field. J. Fluid Mech. 911, A19.10.1017/jfm.2020.1047CrossRefGoogle Scholar
Vernet, M., Fauve, S. & Gissinger, C. 2024 Thermoelectricity at a gallium–mercury liquid metal interface. Proc. Natl Acad. Sci. 121 (25), e2320704121.10.1073/pnas.2320704121CrossRefGoogle Scholar
Wang, Q., Liu, H.-R., Verzicco, R., Shishkina, O. & Lohse, D. 2021 Regime transitions in thermally driven high-Rayleigh number vertical convection. J. Fluid Mech. 917, A6.10.1017/jfm.2021.262CrossRefGoogle Scholar
Xie, Y.-C. & Xia, K.-Q. 2017 Turbulent thermal convection over rough plates with varying roughness geometries. J. Fluid Mech. 825, 573599.10.1017/jfm.2017.397CrossRefGoogle Scholar
Xu, Y., Horn, S. & Aurnou, J.M. 2022 Thermoelectric precession in turbulent magnetoconvection. J. Fluid Mech. 930, A8.10.1017/jfm.2021.880CrossRefGoogle Scholar
Yang, R., Chong, K.L., Wang, Q., Verzicco, R., Shishkina, O. & Lohse, D. 2020 Periodically modulated thermal convection. Phys. Rev. Lett. 125 (15), 154502.10.1103/PhysRevLett.125.154502CrossRefGoogle ScholarPubMed
Zhang, S., Chen, X., Xia, Z., Xi, H.-D., Zhou, Q. & Chen, S. 2021 Stabilizing/destabilizing the large-scale circulation in turbulent Rayleigh–Bénard convection with sidewall temperature control. J. Fluid Mech. 915, A14.10.1017/jfm.2021.58CrossRefGoogle Scholar
Zhao, D. & Tan, G. 2014 A review of thermoelectric cooling: materials, modeling and applications. Appl. Therm. Engng 66 (1–2), 1524.10.1016/j.applthermaleng.2014.01.074CrossRefGoogle Scholar
Zhu, H.-T., Chen, L. & Ni, M.-J. 2024 Effects of wall conductivities on magnetoconvection in a cube. Phys. Rev. Fluids 9 (4), 043701.10.1103/PhysRevFluids.9.043701CrossRefGoogle Scholar