Hostname: page-component-78c5997874-t5tsf Total loading time: 0 Render date: 2024-11-10T07:09:33.033Z Has data issue: false hasContentIssue false

Convection due to internal heat sources

Published online by Cambridge University Press:  11 April 2006

Morten Tveitereid
Affiliation:
Department of Mechanics, University of Oslo, Norway
Enok Palm
Affiliation:
Department of Mechanics, University of Oslo, Norway

Abstract

This paper is concerned with convection generated by uniformly distributed internal heat sources. By a numerical method it is found that the planform is down-hexagons for infinite Prandtl numbers and Rayleigh numbers up to at least 15 times the critical value. The motion is also studied for finite Prandtl numbers and small supercritical Rayleigh numbers by using an amplitude expansion. It turns out that a small subcritical regime exists. Moreover, it also emerges that for Prandtl numbers less than 0.25 the stable planform is up-hexagons. In §3 a necessary condition in order to obtain a hexagonal planform is derived when the coefficients in the differential equations are a function of the vertical co-ordinate z.

Type
Research Article
Copyright
© 1976 Cambridge University Press

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Busse, F. H. 1962 Dissertion, University of Munich.
Busse, F. H. 1972 J. Fluid Mech. 52, 97.
Chandrasekhar, S. 1961 Hydrodynamic and Hydromagnetic Stability. Oxford: Clarendon Press.
Herring, J. R. 1963 J. Atmos. Sci. 20, 325.
Herring, J. R. 1964 J. Atmos. Sci. 21, 277.
Hoard, C. O., Robertson, C. R. & Acrivos, A. 1970 Int. J. Heat Mass Transfer. 13, 849.
Krishnamurti, R. 1968a J. Fluid Mech 33, 445.
Krishnamurti, R. 1968b J. Fluid Mech 33, 457.
Kulacki, F. A. & Goldstein, R. J. 1972 J. Fluid Mech. 55, 271.
Kvernvold, O. 1975 Inst. Math., Univ. Oslo, Preprint Ser. no. 1.
McKenzie, D. P., Roberts, J. M. & Weiss, N. O. 1974 J. Fluid Mech. 62, 465.
Palm, E. 1960 J. Fluid Mech. 8, 183.
Palm, E. 1975 Ann. Rev. Fluid Mech. 7, 39.
Palm, E., Ellingsen, T. & Gjevik, B. 1967 J. Fluid Mech. 30, 651.
Roberts, P. H. 1967 J. Fluid Mech. 30, 33.
Schlüter, A., Lortz, D. & Busse, F. H. 1965 J. Fluid Mech. 23, 129.
Schwiderski, E. W. & Schwab, H. J. A. 1971 J. Fluid Mech. 48, 703.
Segel, L. A. 1965 J. Fluid Mech. 21, 359.
Segel, L. A. & Stuart, J. T. 1962 J. Fluid Mech. 13, 289.
Sparrow, E. M., Goldstein, R. J. & Jonsson, V. K. 1964 J. Fluid Mech. 18, 513.
Thirlby, R. 1970 J. Fluid Mech. 44, 673.
Tritton, D. J. & Zarraga, M. N. 1967 J. Fluid Mech. 30, 21.
Whitehead, J. A. & Chen, M. M. 1970 J. Fluid Mech. 40, 549.