Hostname: page-component-78c5997874-v9fdk Total loading time: 0 Render date: 2024-11-10T06:40:17.832Z Has data issue: false hasContentIssue false

Convection in horizontal cavities

Published online by Cambridge University Press:  21 April 2006

P. G. Simpkins
Affiliation:
AT&T Bell Laboratories, Murray Hill, New Jersey 07974
K. S. Chen
Affiliation:
AT&T Bell Laboratories, Murray Hill, New Jersey 07974 Current address: Department of Mechanical Engineering, National Sun Yat-Sen University, Kaohsiung, Taiwan.

Abstract

Flows in water-filled rectangular cavities due to an applied horizontal temperature gradient are examined for Rayleigh numbers, based on height, R [ges ] 106 and aspect ratios (length/height) L [ges ] 2. Laser Doppler velocimetry measurements of the horizontal velocity distribution throughout the core are complemented with local temperature measurements and interferometry observations. The results show that the core stream function is aspect-ratio dependent when R > O(105) and the Prandtl number is fixed. When R [les ] 106 it appears that the layers on the horizontal surfaces fill the cavity depth if L [ges ] 3. For values of R [ges ] 107 and L = 2 the motion in the core is extremely small and the mass flux occurs in layers adjacent to the horizontal walls. Computations of the heat transfer across the cavity are in good agreement with numerical solutions of the vertical boundary-layer equations.

Type
Research Article
Copyright
© 1986 Cambridge University Press

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Batchelor, G. 1954 Q. Appl. Maths 12, 209.
Bejan, A. & Tien, C. L. 1978 Trans ASME J. Heat Transfer 100, 641.
Bejan, A., Al-Homoud, A. A. & Imberger, J. 1981 J. Fluid Mech. 109, 283.
Blythe, P. A. & Simpkins, P. G. 1977 Physico-chemical Hydrodynamics 2, 511.
Blythe, P. A., Daniels, P. G. & Simpkins, P. G. 1983 Proc. R. Soc. Lond. A 387, 367.
Briggs, D. G. & Jones, D. N. 1982 unpublished, ASME Paper 82-WA/HT-64.
Bryngdahl, O. 1965 Progress in Optics 4, 37.
Catton, I. 1978 Proc. 6th Int. Heat Trans. Conf. 6, 13.
Cormack, D. E., Leal, L. G. & Imberger, J. 1974 J. Fluid Mech. 65, 209.
Eckert, E. R. G. & Carlson, W. O. 1961 Intl J. Heat Mass Transfer 2, 106.
Elder, J. W. 1965 J. Fluid Mech. 23, 77.
Gill, A. E. 1966 J. Fluid Mech. 26, 515.
Hadley, G. 1735 Phil. Trans. R. Soc. Lond. 29, 58.
Hart, J. E. 1972 J. Atmos. Sci. 29, 687.
Hart, J. E. 1983a J. Fluid Mech. 132, 271.
Hart, J. E. 1983b Intl J. Heat Mass Transfer 26, 1069.
Imberger, J. 1974 J. Fluid Mech. 65, 247.
Kamotani, Y., Wang, L. W. & Ostrach, S. 1983 AIAAJ. 21, 290.
Kirdyashkin, A. G. 1984 Intl J. Heat Mass Transfer 27, 587.
Merzkirch, W. 1974 Flow Visualization, ch. 3, pp. 12931. Academic.
Ostrach, S. 1972 Adv. Heat Transfer 8, 161.
Quon, C. 1972 Phys. Fluids 15, 12.
Quon, C. 1977 Trans ASME J. Heat Transfer 99, 341.
Schiroky, G. H. & Rosenberger, F. 1984 Intl J. Heat Mass Transfer 27, 587.
Shiralkar, G., Gadgil, A. & Tien, C. L. 1981 Intl J. Heat Mass Transfer 24, 1621.
Simpkins, P. G. & Chen, K. S. 1985 Natural Convection: Fundamentals and Applications (ed. KakaÇ, S., Aung, W. & Viskanta, R.), p. 1010. Hemisphere.
Simpkins, P. G. & Dudderar, T. D. 1981 J. Fluid Mech. 110, 433.
Singh, K. R. & Cowling, T. G. 1963 Q. J. Mech. Appl. Maths 16, 17.
Squire, H. B. 1953 Modern Developments in Fluid Dynamics, High Speed Flow (ed. Howarth, L.), ch. 14. Clarendon.
Tichy, J. & Gadgil, A. 1982 Trans ASME J. Heat Transfer 104, 103.
Vahl Davis, G. De & Jones, I. P. 1982 Univ. New South Wales (Kensington, Aust. 2033) Rept. 1982/FMT/3.
Wilmshurst, T. H. & Rizzo, J. E. 1974 J. Phys. E: Sci. Instrum. 7, 924.