Hostname: page-component-745bb68f8f-grxwn Total loading time: 0 Render date: 2025-01-08T14:14:43.103Z Has data issue: false hasContentIssue false

Convective response of a mass of water near 4 °C to a constant cooling rate applied on its boundaries

Published online by Cambridge University Press:  20 April 2006

L. Robillard
Affiliation:
École Polytechnique, Université de Montréal, Department of Civil Engineering, Montreal, Canada
P. Vasseur
Affiliation:
École Polytechnique, Université de Montréal, Department of Civil Engineering, Montreal, Canada

Abstract

The transient natural convection of a mass of water confined within a closed cavity with wall temperature decreasing at a steady rate is considered. For situations where a linear density-temperature relationship can be assumed, a quasi-steady state following an initial transient may be reached, provided that the cooling rate applied to the wall is held constant long enough. Steady-state flow characteristics in the case of a specific geometry are functions of a single parameter, the Rayleigh number, in which a dimensionless temperature, based on the cooling rate, is used. For the particular case of water cooled through 4 °C, the temperature at which maximum density occurs, a linear variation of density with respect to temperature is no more acceptable. However, it can be assumed that a linear relationship between the water thermal-expansion coefficient and the temperature is valid in the neighbourhood of 4 °C. With such an assumption it is still possible to characterize the cooling process that follows the initial transient by a single parameter. Detailed numerical results are presented for the particular case of a square cavity. Existing experimental and numerical results for the case of a horizontal circular pipe are also discussed.

Type
Research Article
Copyright
© 1982 Cambridge University Press

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Booker, J. R. 1976 J. Fluid Mech. 76, 741.
Chandrashekar, S. 1961 Hydrodynamic and Hydromagnetic Stability. Oxford University Press.
Cheng, K. C. & Takeuchi, M. 1976 Trans. A.S.M.E. C, J. Heat Transfer 98, 581.
Cheng, K. C., Takeuchi, M. & Gilpin, R. 1978 Numer. Heat Transfer 1, 101.
Deaver, F. K. & Eckert, E. R. G. 1970 In Heat Transfer, vol. 4, paper NC 1.1. Elsevier.
Desai, V. S. & Forbes, R. E. 1971 Environ. Geophys. Heat Transfer 4, 41.
Forbes, R. E. & Cooper, J. W. 1975 Trans. A.S.M.E. C, J. Heat Transfer 97, 47.
Gilpin, R. R. 1975 Int. J. Heat Mass Transfer 18, 13.
Gray, D. D. & Giogini, A. 1976 Int. J. Heat Mass Transfer 19, 545.
Linthorst, S. J. M., Schinkel, W. M. M. & Hoogendoorn, G. J. 1980 In Proc. A.S.M.E. Nat. Heat Transfer Conf., Orlando, HTD 8, 39.
Mallison, G. D. & de Vahl Davis, G. 1973 J. Comp. Phys. 12, 435.
Moore, D. R. & Weiss, N. O. 1973 J. Fluid Mech. 61, 553.
Patterson, J. & Imberger, J. 1980 J. Fluid Mech. 100, 65.
Quack, H. 1970 Wäme- und Stoffübertragung 3, 134.
Roache, P. 1976 Computational Fluid Dynamics. Hermose.
Robillard, L. & Vasseur, P. 1981 Trans. A.S.M.E. C, J. Heat Transfer 103, 528.
Takeuchi, M. & Cheng, K. C. 1976 Wärme- und Stoffübertragung 9, 215.
Tarunin, E. L. 1968 Izv. Akad. Nauk S.S.S.R. Mech. Zhid. i Gaza 3, 83.
Vasseur, P. & Robillard, L. 1980 Int. J. Heat Mass Transfer 23, 1195.
Veronis, G. 1963 Astrophys. J. 137, 641.
Watson, A. 1972 Quart. J. Mech. Appl. Math. 15, 423.
Woods, L. C. 1954 Aero. Quart. 5, 176.