Hostname: page-component-745bb68f8f-g4j75 Total loading time: 0 Render date: 2025-01-28T02:09:38.515Z Has data issue: false hasContentIssue false

Coupling pore network and finite element methods for rapid modelling of deformation

Published online by Cambridge University Press:  15 June 2020

Samuel Fagbemi
Affiliation:
Department of Petroleum Engineering, University of Wyoming, Laramie, WY82071, USA
Pejman Tahmasebi*
Affiliation:
Department of Petroleum Engineering, University of Wyoming, Laramie, WY82071, USA Department of Civil Engineering, University of Wyoming, Laramie, WY82071, USA
*
Email address for correspondence: ptahmase@uwyo.edu

Abstract

Numerical modelling of deformation in hydromechanical systems can be time-consuming using fully coupled classical numerical methods for large representative porous media samples. In this paper, we present a new two-way coupled partitioned fluid–solid system. The coupled system is applied for simulating geomechanical processes at the pore-scale. We track the deformation of the solid resulting from the drainage of resident fluids in the pores, as well as the evolution of fluid properties from dynamic loading. The finite element method is responsible for capturing the structural deformation in the coupled system while the dynamic pore network is used for modelling multiphase flow in the fluid subsystem. A fictitious fluid–solid interface is created at each pore network-finite element node junction via convex hulling, followed by data exchange using linear interpolation. The results show good agreement with a pre-existing coupled finite volume model and the computations are completed in much less time.

Type
JFM Papers
Copyright
© The Author(s), 2020. Published by Cambridge University Press

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Aker, E., Jørgen Måløy, K., Hansen, A. & Batrouni, G. G. 1998 A two-dimensional network simulator for two-phase flow in porous media. Trans. Porous Med. 32, 163186.CrossRefGoogle Scholar
Alvarez, J. B.2017 Interaction of multiphase fluids and solids: theory, algorithms and applications. PhD thesis, University of Coruna.Google Scholar
Barber, C. B., Dobkin, D. P. & Huhdanpaa, H. 1996 The quickhull algorithm for convex hulls. ACM Trans. Math. Softw. 22, 469483.CrossRefGoogle Scholar
Bathe, K. J. & Zhang, H. 2004 Finite element developments for general fluid flows with structural interactions. Intl J. Numer. Meth. Engng 60, 213232.CrossRefGoogle Scholar
Bathe, K. J., Zhang, H. & Ji, S. 1999 Finite element analysis of fluid flows fully coupled with structural interactions. Comput. Struct. 72, 116.CrossRefGoogle Scholar
Bijeljic, B. & Blunt, M. J. 2007 Pore-scale modeling of transverse dispersion in porous media. Water Resour. Res. 43, W12S11.CrossRefGoogle Scholar
Blunt, M. 1995 Pore-level model of wetting. Phys. Rev. E 52, 63876403.Google Scholar
Bryant, S. & Blunt, M. 1992 Prediction of relative permeability in simple porous media. Phys. Rev. A 46, 20042011.CrossRefGoogle ScholarPubMed
Bueno, J. & Gomez, H. 2016 Liquid-vapor transformations with surfactants. Phase-field model and isogeometric analysis. J. Comput. Phys. 321, 797818.CrossRefGoogle Scholar
Campbell, R. L.2010 Fluid–structure interaction and inverse design simulations for flexible turbomachinery. PhD thesis, Pennsylvania State University.Google Scholar
Celia, M. A., Reeves, P. C. & Ferrand, L. A. 1995 Recent advances in pore scale models for multiphase flow in porous media. Rev. Geophys. 33, 10491057.CrossRefGoogle Scholar
Chen, M., Yortsos, Y. C. & Rossen, W. R. 2005 Insights on foam generation in porous media from pore-network studies. Colloids Surf. A 256, 181189.CrossRefGoogle Scholar
De Rosis, A., Falcucci, G., Porfiri, M., Ubertini, F. & Ubertini, S. 2014 Hydroelastic analysis of hull slamming coupling lattice Boltzmann and finite element methods. Comput. Struct. 138, 2435.CrossRefGoogle Scholar
Denoël, V. & Detournay, E. 2011 Eulerian formulation of constrained elastica. Intl J. Solids Struct. 48, 625636.CrossRefGoogle Scholar
Dong, H. & Blunt, M. J. 2009 Pore-network extraction from micro-computerized-tomography images. Phys. Rev. E 80, 036307.Google ScholarPubMed
Fagbemi, S., Tahmasebi, P. & Piri, M. 2020 Numerical modeling of strongly coupled microscale multiphase flow and solid deformation. Intl J. Numer. Anal. Meth. Geomech. 44 (2), 161182.CrossRefGoogle Scholar
Fatt, I. 1956 The network model of porous media. Trans. AIME 207, 144181.CrossRefGoogle Scholar
Figus, C., Bray, Y. L., Bories, S. & Prat, M. 1999 Heat and mass transfer with phase change in aporous structure partially heated: continuum model and pore network simulations. Intl J. Heat Mass Transfer. 42, 25572569.CrossRefGoogle Scholar
Geller, S., Kollmannsberger, S., Bettah, E. E., Krafczyk, M., Scholz, D., Duster, A. & Rank, E. 2010 An explicit model for three-dimensional fluid–structure interaction using LBM and p-FEM. In Fluid–Structure Interaction II (ed. Bungartz, H.-J., Mehl, M. & Schäfer, M.), Lecture Notes in Computational Science and Engineering, pp. 285325. Springer.Google Scholar
Gomes, J. P. & Lienhart, H. 2006 Experimental study on a fluid–structure interaction reference test case. In Fluid–Structure Interaction (ed. Bungartz, H.-J. & Schäfer, M.), Lecture Notes in Computational Science and Engineering, pp. 356370. Springer.CrossRefGoogle Scholar
Han, Y. P. A. C. & Cundall, P. A. 2012 LBM–DEM modeling of fluid–solid interaction in porous media. Intl J. Numer. Anal. Methods Geomech. 37, 13911407.CrossRefGoogle Scholar
Joekar-Niasar, V. & Hassanizadeh, S. M. 2012 Analysis of fundamentals of two-phase flow in porous media using dynamic pore-network models: a review. Crit. Rev. Environ. Sci. Technol. 42, 18951976.CrossRefGoogle Scholar
Kharabaf, H. & Yortsos, Y. C. 1998 A pore-network model for foam formation and propagation in porous media. SPE J. 3, 4253.CrossRefGoogle Scholar
Kollmannsberger, S., Geller, S., Duster, A., Tolke, J., Sorger, C., Krafczyk, M. & Rank, E. 2009 Fixed-grid fluid–structure interaction in two dimensions based on a partitioned lattice Boltzmann and p-FEM approach. Intl J. Numer. Meth. Engng 79, 817845.CrossRefGoogle Scholar
Li, J., Mcdougall, S. R. & Sorbie, K. S. 2017 Dynamic pore-scale network model (PNM) of water imbibition in porous media. Adv. Water Resour. 107, 191211.CrossRefGoogle Scholar
Mancuso, M. & Ubertini, F. 2003 An efficient integration procedure for linear dynamics based on a time discontinuous Galerkin formulation. Comput. Mech. 32, 154168.CrossRefGoogle Scholar
Mancuso, Massimo & Ubertini, F. 2002 The Nørsett time integration methodology for finite element transient analysis. Comput. Meth. Appl. Mech. Engng 191, 32973327.CrossRefGoogle Scholar
Munsch, M. & Breuer, M. 2010 Numerical simulation of fluid–structure interaction using eddy-resolving schemes. In Fluid–Structure Interaction (ed. Bungartz, H.-J., Mehl, M. & Schäfer, M.), Lecture Notes in Computational Science and Engineering, pp. 221253. Springer.Google Scholar
Noels, L. & Radovitzky, R. 2008 An explicit discontinuous Galerkin method for non-linear solid dynamics: formulation, parallel implementation and scalability properties. Intl J. Numer. Meth. Engng 74, 13931420.CrossRefGoogle Scholar
Oren, P.-E., Bakke, S. & Arntzen, O. J. 1998 Extending predictive capabilities to network models. SPE J. 3, 324336.CrossRefGoogle Scholar
Pereira, G. G., Pinczewski, W. V, Chan, D. Y. C., Paterson, L. & Oren, E. E. 1996 Pore-scale network model for drainage-dominated three-phase flow in porous media. In Transport in Porous Media, vol. 24. Kluwer.Google Scholar
Rugonyi, S. & Bathe, K. J. 2001 On finite element analysis of fluid flows coupled with structural interaction. Comput. Model. Engng Sci. 2, 195212.Google Scholar
Sathe, S. & Tezduyar, T. E. 2008 Modeling of fluid–structure interactions with the space–time finite elements: contact problems. Comput. Mech. 43, 51.CrossRefGoogle Scholar
Sukumar, N., Moran, B. & Belytschko, T. 1998 The natural element method in solid mechanics. Intl J. Numer. Meth. Engng 43, 839887.3.0.CO;2-R>CrossRefGoogle Scholar
Tahmasebi, P. & Kamrava, S. 2019 A pore-scale mathematical modeling of fluid-particle interactions: thermo-hydro-mechanical coupling. Intl J. Greenh. Gas Control 83, 245255.CrossRefGoogle Scholar
Turek, S., Hron, J., Razzaq, M., Wobker, H. & Schäfer, M. 2010 Numerical benchmarking of fluid–structure interaction: a comparison of different discretization and solution approaches. In Fluid–Structure Interaction II (ed. Bungartz, H.-J., Mehl, M. & Schäfer, M.), pp. 413424. Springer.Google Scholar
Turek, S. & Hron, J. 2006 Proposal for numerical benchmarking of fluid–structure interaction between an elastic object and laminar incompressible flow. In Fluid–Structure Interaction, pp. 371385. Springer.CrossRefGoogle Scholar
Vierendeels, J., Lanoye, L., Degroote, J. & Verdonck, P. 2007 Implicit coupling of partitioned fluid–structure interaction problems with reduced order models. Comput. Struct. 85, 970976.CrossRefGoogle Scholar
Zhang, X. & Tahmasebi, P. 2018 Micromechanical evaluation of rock and fluid interactions. Intl J. Greenh. Gas Control 76, 266277.CrossRefGoogle Scholar
Zhu, Q. J., He, Y. F. & Yin, Y. 2014 Finite element analysis of deformation mechanism for porous materials under fluid–solid interaction. Mater. Res. Innov. 18, 2227.CrossRefGoogle Scholar
Zhu, W. & Wong, T.-F. 1996 Permeability reduction in a dilating rock: network modeling of damage and tortuosity. Geophys. Res. Lett. 23, 30993102.CrossRefGoogle Scholar
Zienkiewicz, O. C., Taylor, R. L. & Taylor, R. L. 2000 The Finite Element Method: Solid Mechanics, vol. 2. Butterworth-Heinemann.Google Scholar